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Fluctuations in the vicinity of a phase transition are important but neglected in mean-field theory.

In order to assess the influence of such fluctuations on the critical endpoint and the size of the

critical region in the QCD phase diagram, a mean-field calculation of a two-flavor quark-meson

model is compared with a renormalization group approach. However, due to the lack of confine-

ment in this effective model the equation of state near the chiral phase transition is still unrealistic.

A first improvement of this model can be achieved by coupling quark degrees of freedom to the

Polyakov loop, consequently incorporating certain aspects of confinement. The influence of these

modifications on the resulting phase diagram is discussed.
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1. Introduction

Driven by the future heavy-ion programs of CBM at the FAIR facility, and soon also at the
CERN LHC, the properties of strongly interacting matter at finite temperatureT and baryon num-
ber density are of growing interest. On the theoretical sideQCD at high temperature and/or quark
chemical potentialµ predicts a phase transition from the ordinary hadronic phase to a chirally
restored and deconfined quark gluon plasma (QGP) phase. Based on calculations in effective mod-
els, as well as universality arguments, the order of the phase transition depends on the number of
quark flavors and on the value of the quark masses. For physical values of the quark masses and
small baryon densities the transition as function of temperature is continuous. On the other hand,
for small temperature the transition as function of the chemical potential is of first-order. This
suggests the existence of a critical endpoint (CEP) in the phase diagram, given by the endpoint
of a first-order transition line in the(T,µ)-plane [1, 2, 3]. The phase transition at the CEP is of
second-order and belongs to the three-dimensional Ising universality class. At this point the QCD
free energy has a genuine singularity and as a consequence both the chiral and the quark number
susceptibility diverge. Due to, e.g., the large strange quark-mass sensitivity the precise location of
this endpoint is not yet known.

From QCD lattice simulations for vanishingµ , it is known that the transition temperature
in the presence of light quarks is lowered substantially from its value in the pure gauge limit of
infinitely heavy quarks. Furthermore, in the limit of vanishing up- and down quark masses as well
as infinite strange quark mass, the chiral transition is likely to be of second-order and its static
critical behavior falls in the universality class of the HeisenbergO(4) model in three dimensions
[4]. But the situation on the lattice for finiteµ is much less clear due to the notorious fermion sign
problem. Nevertheless, from direct numerical evaluationsof the QCD partition function or also
from a Taylor expansion of the pressure around vanishingµ some evidence exists for a CEP in the
phase diagram at finiteµ [5, 6, 7]. For two-flavor massless QCD the CEP turns into a tricritical
point (TCP) where for smallµ ’s the O(4) line of critical points terminates. For largerµ ’s the
transition is again of first-order.

In order to interpret the physical content of these lattice findings they have to be compared
to model studies. A variety of model studies of the CEP and thecritical region are available
in the literature, but most of them are based on a mean-field description of the phase transition,
consequently neglecting quantum fluctuations. However, itis well-known, especially in the vicinity
of a phase transition, that fluctuations become more and moreimportant and mean-field theory
fails to describe adequately the critical behavior of phasetransitions. Therefore, it is necessary
to go beyond mean-field theory to arrive at a proper description. An efficient way, to go beyond
mean-field theory, is the renormalization group (RG) methodwhich considers the universal and
non-universal aspects not only of second-order but also of first-order phase transitions [8, 9].

In this contribution we summarize recent results on the sizeof the critical region around the
TCP and CEP obtained with an effective two-flavor quark-meson model, both for a mean-field
approximation and a RG approach [10]. Due to the lack of confinement in this model single quark
states are already excited in the chirally broken phase yielding an unrealistic equation of state
(EoS) near the phase transition [11, 12]. Coupling quark degrees of freedom to the Polyakov loop
certain aspects of confinement are incorporated that improve the EoS [13, 14, 15, 16]. Finally, the
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modifications caused by the Polyakov loop on the phase diagram is presented and compared with
the one obtained in the pure quark-meson model [17].

2. The size of the critical region around the TCP and CEP

The size of a critical region around a critical endpoint is defined through the breakdown of
mean-field theory and emergence of nontrivial critical exponents. The size usually can be deter-
mined by the well-known Ginzburg criterion which is based onan expansion of the singular part
of the free energy for a second-order phase transition. However, since the expansion coefficients
are not known for the strong interaction the Ginzburg criterion is only of limited use in the present
context. Universality arguments are also not helpful if theunderlying microscopic dynamics is not
well determined. For example, in the cases of theλ -transition of liquid He4 and the superconduct-
ing transition of metals, both transitions lie in the same universality class but their critical regions
defined by their corresponding Ginzburg-Levanyuk temperature deviate from each other by several
orders of magnitude.

An estimate for the size of the critical region for hadronic matter also can be defined by calcu-
lating the in-medium scalar and chiral static susceptibility using their enhancement as the criterion
[18]. In general, static susceptibilities are obtained from the dynamic response functionχab(ω ,~q)

in the static (ω = 0) and long wavelength limit (~q→ 0) wherea,b denote some external fields. The
scalar static susceptibilityχσ corresponds to the zero-momentum projection of the scalar propaga-
tor which encodes all fluctuations of the chiral order parameter 〈q̄q〉. Thus, the maximum ofχσ

as function of temperature or quark chemical potential should coincide with the most rapid change
in the chiral order parameter. It is related to the sigma meson mass viaχσ ∼ M−2

σ . Similarly, the
chiral or quark number susceptibilityχq is the response of the net quark number densitynq to an
infinitesimal variation of the quark chemical potential,χq = ∂nq/∂ µq.

In mean-field approximation and for a physical pion mass the two-flavor quark-meson model
exhibits a smooth crossover on the temperature axis and a first-order chiral phase transition on
the density axis [19]. For increasing temperatures the first-order transition line terminates at the
CEP. Along the line of a first-order phase transition the thermodynamic potential has two minima of
equal depth which are separated by finite potential barrier.The height of the barrier is largest at zero
temperature and finite chemical potential and decreases towards higher temperature. At the CEP
the barrier and accordingly the latent heat of the transition disappears and the potential flattens. At
this point the phase transition is of second-order and characterized by long-wavelength fluctuations
of the order parameter which is in our case proportional to the scalarσ -field. As a consequence
the scalar sigma mass must vanish at this point which can be seen in the behavior of the in-medium
meson masses: in the vicinity of the CEP the sigma mass as function of temperature and quark
chemical potential drops below the pion mass which stays always finite since the chiral symmetry
is still explicitly broken. For temperatures and chemical potentials above the chiral transition the
sigma mass increases again and will degenerate with the pionmass signaling restoration of chiral
symmetry.

At the CEP the slope of the quark number density tends to infinity which will yield a diverging
susceptibility exactly at this point. For temperatures below the critical one the quark number density
jumps because of the first-order phase transition. For temperatures above the CEP the discontinuity
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Figure 1: The contour regions in the phase diagram for three differentratios of the scalar susceptibilities
Rs = χσ (T,µ)/χσ (0,0) (Rs = 10,15,20) around the CEP in reduced units.

vanishes across the transition line and the density changesgradually due to the smooth crossover.
This finally produces a finite height of the quark number susceptibility χq. Thus, in equilibriumχq

diverges only at the CEP and is finite everywhere else1. The height ofχq decreases for decreasing
chemical potentials towards theT-axis. For temperatures below the CEPχq is discontinuous and
jumps across the first-order line. In the vicinity of the CEP the quark number density is always
finite but the susceptibility becomes large. Since the quarknumber susceptibility is proportional
to the isothermal compressibilityκT via the relationκT = χq/n2

q this behavior indicates that the
system is easy to compress around the critical point.

Figure 1 shows a contour plot of the scalar susceptibility divided by the vacuum susceptibility

Rs(T,µ) =
χσ (T,µ)

χσ (0,0)

for three fixed ratios around the CEP in the phase diagram in reduced units. The light curves are
the mean-field and the other ones the RG results which we will discuss later. The region of the
enhanced susceptibility is elongated in the direction of the extrapolated first-order transition line.
The deeper reason for this shape can be understood by a study of the critical exponents of the
susceptibility which specify its power-law singularity. In the case of the susceptibility the form
of this divergence depends on the path by which one approaches the critical point. For the path
asymptotically parallel to the first-order transition linethe divergence scales with an exponentγ
which in mean field isγ = 1. For any other path, not parallel to the first-order line, the divergence
scales with another exponentε which in mean-field theory is equal to 2/3. Sinceγ > ε the suscep-
tibility is enhanced in the direction parallel to the first-order transition line. This is the reason for
the elongated shape of the critical region in the phase diagram.

Universality arguments as well as lattice QCD simulations for two quark flavors withoutUA(1)

anomaly in the chiral limit predict at vanishing quark chemical potential that the effective theory

1This changes for non-equilibrium systems: when entering the coexisting region of the first-order line, the suscep-
tibility also diverges along the isothermal spinodal line,see [20] for further details.
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Figure 2: Two phase diagrams for the quark-meson model obtained with the RG: One for physical pion
masses (right solid line which ends in the CEP) and another one for the chiral limit. Solid lines denote
first-order and dashed lines second-order transition lines.

for the chiral order parameter is the same as for theO(4) model, which has a second-order phase
transition. It is expected that the static critical behavior falls into the universality class of theO(4)-
symmetric Heisenberg model in three dimensions. When reducing the pion mass by varying the
explicit chiral symmetry breaking parameter of our quark-meson model, the CEP moves towards
theT-axis. Already for the pion massMπ ∼ 70 MeV the CEP disappears and chiral symmetry is
restored via a first-order transition for all temperatures and quark chemical potentials. As a conse-
quence this model does not have a tricritical point in the chiral limit in contradiction to universality
arguments and lattice simulations [21]. But as already stated in [19], within the mean-field ap-
proximation the order of the phase transition in the chiral limit of the quark-meson model strongly
depends on the values for the model parameters. The way how toextrapolate towards the chiral
limit is not unique. Thus, the mean-field approximation fails to properly describe the expected
critical behavior in the chiral limit at least for the parameter set chosen.

This is remedied in the RG approach and a second-order phase transition, which lies in the
expectedO(4) universality class, is found in the chiral limit at finite temperature [22, 23]. For
finite chemical potential the second-order transition endsin a TCP. For finite quark or pion masses
this transition is washed out and becomes a smooth crossoverwith a critical endpoint. Thus, in
the RG framework the relationship and the correlations between the TCP and the various CEP’s,
obtained by varying the pion mass, can be studied. In addition, the influence of fluctuations on the
susceptibilities and the critical region around the CEP canbe assessed.

The resulting phase diagrams for the chiral limit and for physical pion massesMπ ∼ 130 MeV
are both shown in Fig. 2. The location of the TCP for our choiceof parameters is atTt

c ∼ 80
MeV and µ t

c ∼ 270 MeV. For temperatures below the TCP the phase transitionchanges initially
to a first-order transition. For temperatures below 10 MeV two phase transitions with a second
tricritical point emerge [24]. A larger constituent quark mass pushes the location of the first TCP
towards the temperature axis and the location of the splitting point of the two phase transition lines
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down towards theµ-axis. All qualitative features of the two transition linessurvive, only the area
bounded by the two transition lines is reduced for increasing quark masses. Thus, in contrast to the
mean-field approximation the RG method yields a TCP in the phase diagram for the chiral limit as
expected.

As the pions become massive the TCP turns into a CEP, which lies in the universality class of
the three-dimensional Ising model. The location of the CEP for physical pion masses is atTc

c ∼ 62
MeV andmc

c ∼ 313 MeV. Compared to recent lattice and other model studies the location of the
TCP and consequently of the CEP is at lower temperatures due to the omission of other degrees
of freedom in the used quark-meson model. Typical for the RG treatment is the bending of the
first-order transition lines for smaller temperatures. Butvery close to theµ-axis the slope of the
first-order boundarydT/dµ tends to infinity similar to the mean-field phase diagram and is also in
agreement with the Clausius-Clapeyron relation [25]. In the chiral limit below the splitting point
the right second-order transition line turns into an crossover for finite quark masses which is not
visible in Fig. 2. Analogously, the second TCP should turn into a critical point whose remnants can
be seen in the order parameter and meson masses [24].

The results of a recalculation of the contour plot around theCEP in the framework of the RG
approach is also shown in Fig. 1. The critical region is againelongated in the direction of the first-
order transition line, but it is now much more compressed. While the interval of the critical region in
the temperature direction is comparable with the one obtained in the mean-field approximation, the
effect in the chemical potential direction is dramatic. In the RG calculation the interval is shrunken
by almost one order of magnitude, despite the fact that the corresponding critical exponents are
quite similar. For example, at the CEP the susceptibility diverges with the critical exponentε ∼ 0.74
which is consistent with the one of the expected 3D Ising universality classε = 0.78. Thus, as a
consequence of fluctuations, the size of the critical regionaround the CEP is substantially reduced
as compared to the mean-field calculation. This may also haveconsequences for the experimental
localization of the CEP in the phase diagram since it furthercomplicates its detection through
event-by-event fluctuations.

3. The quark-meson model with Polyakov-loop dynamics

Despite the success of the RG approach in predicting the expected critical behavior of the
thermodynamics in the quark-meson model, explicit gluonicdegrees of freedom, which are known
to play an important role in the thermodynamics of QCD and areassociated with confinement
aspects are missing in this model. One possibility to incorporate such effects is the coupling of the
quark-meson model to the Polyakov loop. This results in an coupled effective Polyakov–quark-
meson (PQM) model with an interaction potential between quarks, mesons and the Polyakov loop
variablesφ ,φ̄ . The PQM model includes the chiral aspects of QCD as well as certain aspects of
confinement.

The order parameter〈φ〉, and respectively〈φ̄ 〉, vanishes in the confined phase where the free
energy of a single heavy quark, respectively antiquark, diverges and is finite in the deconfined
phase. In the presence of dynamical quarks, the free energy of a quark-antiquark pair does not
diverge anymore, and the order parameter is always non-vanishing. For finite quark chemical
potential the free energies of quarks and antiquarks are different. Since〈φ〉 is related to the free
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energy of quarks and the hermitian conjugate〈φ̄ 〉 to that of antiquarks, their modulus differs in
general.

In pure Yang-Mills theory the mean value〈φ〉, 〈φ̄ 〉 are given by the minima of the effective
Polyakov-loop potentialU(φ , φ̄ ). It can be constructed from lattice data for the expectationvalues
[26] or from a RG calculation [27]. Here, a polynomial expansion in 〈φ〉, 〈φ̄ 〉 up to quartic terms
is used. The expansion coefficients are fixed to reproduce thermodynamic lattice results for the
pure Yang-Mills sector. This potential has a first-order phase transition at the critical temperature
T0 = 270 MeV. In the presence of dynamical quarks, the running gauge coupling is changed due
to fermionic contributions. In our approximation to the Polyakov-loop potential this only leads to
a modification of the first expansion coefficientb2 in front of the quadratic fields. The size of this
effect can be estimated within perturbation theory. At zerotemperature it leads to anNf -dependent
decrease ofΛQCD, which translates into anNf -dependent decrease of the critical temperatureT0

at finite temperature. Table 1 shows the results for theNf -dependent critical temperatureT0 in the
Polyakov-loop potential for massless flavors. Massive flavors lead to a suppression factor in the
β -function of QCD which modifiesT0 further. E.g. for 2+ 1 flavors with a current strange quark
massms ∼ 150 MeV aT0(2+1) ∼ 187 MeV is obtained.

Nf 0 1 2 2+1 3

T0 [MeV] 270 240 208 187 178

Table 1: The critical Polyakov-loop temperatureT0 for Nf massless flavors.

A second step implements aµ-dependent running coupling in theb2 coefficient, analogous to
theNf -dependence discussed above. One can argue that this is a minimal necessary generalization
because without aµ-dependentb2 coefficient the confinement-deconfinement phase transitionhas
a higher critical temperature than the chiral phase transition at vanishing chemical potential. But
this is an unphysical scenario because QCD with dynamical massless quarks in the chirally restored
phase cannot be confining since the string breaking scale would be zero.

As for theNf -dependence one can resort to perturbative estimates, by allowing for an addi-
tional µ-dependent term in the one-loop coefficient of the QCDβ -function, which can be motivated
by using HTL/HDL results. This additional coefficient can befixed such that the chiral transition
temperature and the confinement-deconfinement transition agree at some arbitrary non-vanishing
µ . Interestingly, it turns out that then the transition temperatures agree for all values ofµ . This
µ-dependence in theβ -function then leads to aT0 with an additionalµ-dependence, such that
T0 → T0(µ ,Nf ). Of course, these novel modifications should be viewed as a rough estimate of
the µ-dependence ofT0. For a more quantitative analysis the non-perturbative running of the cou-
pling in the presence of finite temperature and quark densityhas to be considered. This can be
incorporated in a self-consistent RG-setting.

The phase structure of the PQM model is determined by the behavior of the order parameters
〈σ〉, 〈φ〉 and〈φ̄ 〉 and the grand canonical potential as a function of temperature and quark chemical
potential. The phase diagram in the(T,µ)-plane resulting from the two flavor PQM models in
mean-field approximation is shown in Fig. 3 (upper lines). The bottom lines in this figure display
the phase diagram of the pure quark-meson model without the Polyakov loop dynamic.
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Figure 3: Phase diagram of the quark-meson model with Polyakov loop (upper lines) and without Polyakov
loop dynamics (lower lines) in mean-field approximation.

With the Polyakov loop modifications a chiral crossover temperatureTc ∼ 184 MeV atµ = 0
is found with an uncertainty of∼ 14 MeV originating in the error estimate±30 MeV for T0. As
an example for the estimate of the error, the two-loop running of the gauge coupling leads to a
T0 ∼ 192 MeV and hence aTc ∼ 177 MeV. In the presence of dynamical quarks the Polyakov loop
shows also a crossover at the same pseudocritical temperature which can be read off from the peak
position of∂ 〈q̄q〉/∂T and∂ 〈φ〉/∂T .

Recently, a recalculation of the transition temperature ondifferent lattices for two light and
one heavier quark mass close to their physical values yieldsinconsistent results: On the one hand
using the Sommer parameterr0 for the continuum extrapolation aTc = 192±7 MeV is found [28]
and on the other hand in another analysis with four differentsets of lattice sizesNτ = 4,6,8 and 10 a
Tc = 151±3 MeV is obtained [29]. Within an Functional RG approach a critical value ofTc = 172
MeV [30] is achieved which again agrees with aTc = 173±8 MeV obtained in former two-flavor
lattice simulations with improved staggered fermions extrapolated to the chiral limit [31]. Using the
same parameters for the quark-meson model without the Polyakov-loop modifications a crossover
temperature ofTc ∼ 150 MeV emerges [10, 24]. This temperature gap calls for refined studies both
on the lattice as well as analytical methods to resolve this discrepancy.

With and without the Polyakov loop modifications the phase diagram features a critical end-
point (CEP), where the line of first-order transitions terminates in a second-order transition. Lattice
simulations are not conclusive concerning the existence and location of the CEP. There are indica-
tions from lattice simulations at small chemical potentials that deconfinement and chiral symmetry
restoration appear along the same critical line in the phasediagram. For the PQM model with an
µ-independentT0 the coincidence of deconfinement and chiral transition atµ = 0 disappears for
finite µ . The deconfinement temperature is larger than the corresponding chiral transition temper-
ature. This is an unphysical scenario because the deconfinement temperature should be smaller or
equal to the chiral transition temperature. Contrarily, with theµ-dependentT0 coinciding transition
lines for the entire phase diagram within an accuracy of±5 MeV are found.
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4. Summary

The phase diagram of hadronic matter is analyzed in the two-flavor quark-meson model by
means of a Wilsonian RG approach. This model captures essential features of QCD such as chiral
symmetry breaking in the vacuum and can therefore yield valuable insight into the critical behavior
associated with chiral symmetry. Of special importance is the emergence of a CEP and the size of
the critical region around the CEP in connection with fluctuation signals in heavy-ion collisions.
Most studies of this issue have been performed in the mean-field approximation which neglects
thermal and quantum fluctuations. These can be assessed in the RG approach which is able to
correctly predict critical exponents in the vicinity of critical points of the phase diagram.

In a mean-field calculation no TCP is found for the chosen parameter set while the RG predicts
its existence as is expected from universality arguments. Because of the Gaussian fixed point
structure at the TCP mean-field exponents are expected what we also could verify. When effects of
finite current quark masses (or equivalently finite pion masses) are included, a CEP emerges in both
the mean-field and RG calculation. By analyzing the scalar- and quark number susceptibilities with
the RG approach we found nontrivial critical exponents which are consistent with the expected 3D
Ising universality class. As a consequence of fluctuations the size of the critical region around the
CEP is substantially reduced as compared to the mean-field results. This is particularly true in the
µ-direction.

One of the truncations of the quark-meson model is the lack ofexplicit gluonic degrees of
freedom. This is addressed by the introduction of the PQM model that includes certain aspects
of gluon dynamics via the Polyakov loop and represents a minimal synthesis of the two basic
principles of QCD at low temperatures: spontaneous chiral symmetry breaking and confinement.

A limited set of input parameters is adjusted to reproduce lattice QCD results in the pure gauge
sector and pion properties in the hadron sector. Then the PQMmodel correctly describes the step
from the first-order deconfinement transition observed in pure-gauge lattice QCD with aTc ∼ 270
MeV to the crossover phenomenon with a pseudocriticalTc around 200 MeV when two light quark
flavors are added. The non-trivial result is that the crossovers for chiral symmetry restoration and
deconfinement almost coincide at smallµ similar to lattice simulations. Via RG arguments it is
possible to estimate anNf - and µ-dependence in the parameters of the Polyakov loop potential:
the critical temperature of the Polyakov loop model decreases with increasingNf and µ . These
modifications yield coinciding peaks in the temperature derivative of the Polyakov loop expectation
value and the chiral condensate atµ = 0. Interestingly, this coincidence of the deconfinement and
chiral symmetry restoration persists at finiteµ . These findings provide a promising starting point
for a functional RG study in the PQM model, and further extensions towards full QCD.
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