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Fluctuations in the vicinity of a phase transition are intpot but neglected in mean-field theory.
In order to assess the influence of such fluctuations on ttieadrendpoint and the size of the
critical region in the QCD phase diagram, a mean-field catauh of a two-flavor quark-meson
model is compared with a renormalization group approachwewer, due to the lack of confine-
ment in this effective model the equation of state near tiralgbhase transition is still unrealistic.
A first improvement of this model can be achieved by couplingrl degrees of freedom to the
Polyakov loop, consequently incorporating certain agpetonfinement. The influence of these
modifications on the resulting phase diagram is discussed.
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1. Introduction

Driven by the future heavy-ion programs of CBM at the FAIRIliag and soon also at the
CERN LHC, the properties of strongly interacting matter aitdé temperaturd and baryon num-
ber density are of growing interest. On the theoretical @D at high temperature and/or quark
chemical potentiaju predicts a phase transition from the ordinary hadronic @hasa chirally
restored and deconfined quark gluon plasma (QGP) phased Basmlculations in effective mod-
els, as well as universality arguments, the order of theglrassition depends on the number of
quark flavors and on the value of the quark masses. For physikees of the quark masses and
small baryon densities the transition as function of terapge is continuous. On the other hand,
for small temperature the transition as function of the deahpotential is of first-order. This
suggests the existence of a critical endpoint (CEP) in tres@ldiagram, given by the endpoint
of a first-order transition line in théT, u)-plane [1, 2, 3]. The phase transition at the CEP is of
second-order and belongs to the three-dimensional Isiivgrsality class. At this point the QCD
free energy has a genuine singularity and as a consequetitéhbachiral and the quark number
susceptibility diverge. Due to, e.g., the large strangelguzass sensitivity the precise location of
this endpoint is not yet known.

From QCD lattice simulations for vanishing, it is known that the transition temperature
in the presence of light quarks is lowered substantiallynfits value in the pure gauge limit of
infinitely heavy quarks. Furthermore, in the limit of vanigiup- and down quark masses as well
as infinite strange quark mass, the chiral transition idylite be of second-order and its static
critical behavior falls in the universality class of the bBembergO(4) model in three dimensions
[4]. But the situation on the lattice for finite is much less clear due to the notorious fermion sign
problem. Nevertheless, from direct numerical evaluatiohthe QCD partition function or also
from a Taylor expansion of the pressure around vanispisgme evidence exists for a CEP in the
phase diagram at finitg [5, 6, 7]. For two-flavor massless QCD the CEP turns into aitical
point (TCP) where for smalli’s the O(4) line of critical points terminates. For largers the
transition is again of first-order.

In order to interpret the physical content of these latticglifigs they have to be compared
to model studies. A variety of model studies of the CEP andctiitecal region are available
in the literature, but most of them are based on a mean-fieddrigidion of the phase transition,
consequently neglecting quantum fluctuations. Howevisrwell-known, especially in the vicinity
of a phase transition, that fluctuations become more and imgwertant and mean-field theory
fails to describe adequately the critical behavior of phagesitions. Therefore, it is necessary
to go beyond mean-field theory to arrive at a proper desoriptAn efficient way, to go beyond
mean-field theory, is the renormalization group (RG) metivich considers the universal and
non-universal aspects not only of second-order but alsostfdrder phase transitions [8, 9].

In this contribution we summarize recent results on the sfzahe critical region around the
TCP and CEP obtained with an effective two-flavor quark-mesmwdel, both for a mean-field
approximation and a RG approach [10]. Due to the lack of cenfient in this model single quark
states are already excited in the chirally broken phaseliyiglan unrealistic equation of state
(EoS) near the phase transition [11, 12]. Coupling quarkesegof freedom to the Polyakov loop
certain aspects of confinement are incorporated that inegito EoS [13, 14, 15, 16]. Finally, the
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modifications caused by the Polyakov loop on the phase dragrgpresented and compared with
the one obtained in the pure quark-meson model [17].

2. Thesizeof thecritical region around the TCP and CEP

The size of a critical region around a critical endpoint ifirtkd through the breakdown of
mean-field theory and emergence of nontrivial critical exgus. The size usually can be deter-
mined by the well-known Ginzburg criterion which is basedamnexpansion of the singular part
of the free energy for a second-order phase transition. Mervsince the expansion coefficients
are not known for the strong interaction the Ginzburg doters only of limited use in the present
context. Universality arguments are also not helpful ifginelerlying microscopic dynamics is not
well determined. For example, in the cases ofxheansition of liquid Hé and the superconduct-
ing transition of metals, both transitions lie in the sam&ensality class but their critical regions
defined by their corresponding Ginzburg-Levanyuk tempeeadieviate from each other by several
orders of magnitude.

An estimate for the size of the critical region for hadroniattar also can be defined by calcu-
lating the in-medium scalar and chiral static susceptybising their enhancement as the criterion
[18]. In general, static susceptibilities are obtainedrfrine dynamic response functiggp(w, d)
in the static { = 0) and long wavelength limi{— 0) wherea, b denote some external fields. The
scalar static susceptibility; corresponds to the zero-momentum projection of the scatgraga-
tor which encodes all fluctuations of the chiral order pat@m@q). Thus, the maximum ofy
as function of temperature or quark chemical potential Ehooincide with the most rapid change
in the chiral order parameter. It is related to the sigma mesass viax, ~ M;2. Similarly, the
chiral or quark number susceptibilityy is the response of the net quark number dengjtto an
infinitesimal variation of the quark chemical potentig,= dng/0 lg.

In mean-field approximation and for a physical pion masswweftavor quark-meson model
exhibits a smooth crossover on the temperature axis andtaffiter chiral phase transition on
the density axis [19]. For increasing temperatures thedidér transition line terminates at the
CEP. Along the line of a first-order phase transition thertifmtynamic potential has two minima of
equal depth which are separated by finite potential baiftee.height of the barrier is largest at zero
temperature and finite chemical potential and decreasesdsvwhigher temperature. At the CEP
the barrier and accordingly the latent heat of the transitiicappears and the potential flattens. At
this point the phase transition is of second-order and cleniaed by long-wavelength fluctuations
of the order parameter which is in our case proportional éosttalaro-field. As a consequence
the scalar sigma mass must vanish at this point which candreis¢he behavior of the in-medium
meson masses: in the vicinity of the CEP the sigma mass atidnmaf temperature and quark
chemical potential drops below the pion mass which stayaysinite since the chiral symmetry
is still explicitly broken. For temperatures and chemioatgnmtials above the chiral transition the
sigma mass increases again and will degenerate with thenpé@s signaling restoration of chiral
symmetry.

At the CEP the slope of the quark number density tends to ipfivinich will yield a diverging
susceptibility exactly at this point. For temperature®hehe critical one the quark number density
jumps because of the first-order phase transition. For teatypes above the CEP the discontinuity
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Figure 1. The contour regions in the phase diagram for three differa@tids of the scalar susceptibilities
Rs = X0 (T, 1)/ X0(0,0) (Rs = 10,15, 20) around the CEP in reduced units.

vanishes across the transition line and the density chagrgelsially due to the smooth crossover.
This finally produces a finite height of the quark number spisisity xq. Thus, in equilibriumyy
diverges only at the CEP and is finite everywhere’el3te height ofxq decreases for decreasing
chemical potentials towards tfieaxis. For temperatures below the CKfis discontinuous and
jumps across the first-order line. In the vicinity of the CER guark number density is always
finite but the susceptibility becomes large. Since the quarkber susceptibility is proportional
to the isothermal compressibilityr via the relationkt = Xq/ng this behavior indicates that the
system is easy to compress around the critical point.

Figure 1 shows a contour plot of the scalar susceptibiliydeid by the vacuum susceptibility

_ Xo(T, 1)

Rs(T,u) = X0 (0,0)

for three fixed ratios around the CEP in the phase diagramdincesl units. The light curves are
the mean-field and the other ones the RG results which we situds later. The region of the
enhanced susceptibility is elongated in the direction efdhtrapolated first-order transition line.
The deeper reason for this shape can be understood by a dtildg oritical exponents of the
susceptibility which specify its power-law singularityn the case of the susceptibility the form
of this divergence depends on the path by which one appreableecritical point. For the path
asymptotically parallel to the first-order transition littee divergence scales with an expongnt
which in mean field iy = 1. For any other path, not parallel to the first-order line, divergence
scales with another exponentvhich in mean-field theory is equal tg2. Sincey > ¢ the suscep-
tibility is enhanced in the direction parallel to the firgtder transition line. This is the reason for
the elongated shape of the critical region in the phase airagr
Universality arguments as well as lattice QCD simulatiardwo quark flavors without/a (1)

anomaly in the chiral limit predict at vanishing quark cheatipotential that the effective theory

1This changes for non-equilibrium systems: when enteriegctiexisting region of the first-order line, the suscep-
tibility also diverges along the isothermal spinodal lisee [20] for further details.
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Figure 2: Two phase diagrams for the quark-meson model obtained WihRIG: One for physical pion

masses (right solid line which ends in the CEP) and anotherfonthe chiral limit. Solid lines denote
first-order and dashed lines second-order transition.lines

for the chiral order parameter is the same as for@(4) model, which has a second-order phase
transition. It is expected that the static critical behat@ls into the universality class of th@(4)-
symmetric Heisenberg model in three dimensions. When megube pion mass by varying the
explicit chiral symmetry breaking parameter of our quargson model, the CEP moves towards
the T-axis. Already for the pion masd,; ~ 70 MeV the CEP disappears and chiral symmetry is
restored via a first-order transition for all temperatuned quark chemical potentials. As a conse-
guence this model does not have a tricritical point in theathimit in contradiction to universality
arguments and lattice simulations [21]. But as alreadyedtat [19], within the mean-field ap-
proximation the order of the phase transition in the chiraitlof the quark-meson model strongly
depends on the values for the model parameters. The way hewtrpolate towards the chiral
limit is not unique. Thus, the mean-field approximationddi properly describe the expected
critical behavior in the chiral limit at least for the paramreset chosen.

This is remedied in the RG approach and a second-order preassstion, which lies in the
expectedO(4) universality class, is found in the chiral limit at finite tperature [22, 23]. For
finite chemical potential the second-order transition endsTCP. For finite quark or pion masses
this transition is washed out and becomes a smooth crossgtrera critical endpoint. Thus, in
the RG framework the relationship and the correlations betwthe TCP and the various CEP’s,
obtained by varying the pion mass, can be studied. In additiee influence of fluctuations on the
susceptibilities and the critical region around the CEPlmassessed.

The resulting phase diagrams for the chiral limit and forgatgl pion masselsl,; ~ 130 MeV
are both shown in Fig. 2. The location of the TCP for our cha@égarameters is af} ~ 80
MeV and ut ~ 270 MeV. For temperatures below the TCP the phase trangitianges initially
to a first-order transition. For temperatures below 10 Me¥d phase transitions with a second
tricritical point emerge [24]. A larger constituent quarlass pushes the location of the first TCP
towards the temperature axis and the location of the sgittioint of the two phase transition lines
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down towards thei-axis. All qualitative features of the two transition linesrvive, only the area
bounded by the two transition lines is reduced for incrapgimark masses. Thus, in contrast to the
mean-field approximation the RG method yields a TCP in theg@l@agram for the chiral limit as
expected.

As the pions become massive the TCP turns into a CEP, whiglmnligne universality class of
the three-dimensional Ising model. The location of the Catfphysical pion masses isgf ~ 62
MeV andm¢ ~ 313 MeV. Compared to recent lattice and other model studliesocation of the
TCP and consequently of the CEP is at lower temperaturesadiie tomission of other degrees
of freedom in the used quark-meson model. Typical for the R@tment is the bending of the
first-order transition lines for smaller temperatures. @Bery close to theu-axis the slope of the
first-order boundarg T /du tends to infinity similar to the mean-field phase diagram aradgo in
agreement with the Clausius-Clapeyron relation [25]. & ¢hiral limit below the splitting point
the right second-order transition line turns into an crassdor finite quark masses which is not
visible in Fig. 2. Analogously, the second TCP should tuto encritical point whose remnants can
be seen in the order parameter and meson masses [24].

The results of a recalculation of the contour plot around@E® in the framework of the RG
approach is also shown in Fig. 1. The critical region is agémgated in the direction of the first-
order transition line, but it is now much more compressedil&the interval of the critical region in
the temperature direction is comparable with the one obtkin the mean-field approximation, the
effect in the chemical potential direction is dramatic.Ha RG calculation the interval is shrunken
by almost one order of magnitude, despite the fact that theegponding critical exponents are
quite similar. For example, at the CEP the susceptibilityedjes with the critical exponent~ 0.74
which is consistent with the one of the expected 3D Ising ensality class = 0.78. Thus, as a
consequence of fluctuations, the size of the critical regr@mund the CEP is substantially reduced
as compared to the mean-field calculation. This may also tansequences for the experimental
localization of the CEP in the phase diagram since it furtt@mnplicates its detection through
event-by-event fluctuations.

3. The quark-meson model with Polyakov-loop dynamics

Despite the success of the RG approach in predicting theceegberitical behavior of the
thermodynamics in the quark-meson model, explicit glualeigrees of freedom, which are known
to play an important role in the thermodynamics of QCD andamsociated with confinement
aspects are missing in this model. One possibility to ino@ate such effects is the coupling of the
quark-meson model to the Polyakov loop. This results in amplenl effective Polyakov—quark-
meson (PQM) model with an interaction potential betweernrkgjanesons and the Polyakov loop
variablesqo,qE. The PQM model includes the chiral aspects of QCD as well #aineaspects of
confinement.

The order parameteip), and respectively@, vanishes in the confined phase where the free
energy of a single heavy quark, respectively antiquarkerdes and is finite in the deconfined
phase. In the presence of dynamical quarks, the free enérgygoark-antiquark pair does not
diverge anymore, and the order parameter is always nomshviag. For finite quark chemical
potential the free energies of quarks and antiquarks aferelift. Since(@) is related to the free
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energy of quarks and the hermitian conjugé@ to that of antiquarks, their modulus differs in
general.

In pure Yang-Mills theory the mean valye), <q3> are given by the minima of the effective
Polyakov-loop potentidl (¢, qE) It can be constructed from lattice data for the expectatadnes
[26] or from a RG calculation [27]. Here, a polynomial expansin (@), (@ up to quartic terms
is used. The expansion coefficients are fixed to reprodugentitynamic lattice results for the
pure Yang-Mills sector. This potential has a first-ordergghtransition at the critical temperature
To = 270 MeV. In the presence of dynamical quarks, the runningygawupling is changed due
to fermionic contributions. In our approximation to the yaov-loop potential this only leads to
a modification of the first expansion coefficidntin front of the quadratic fields. The size of this
effect can be estimated within perturbation theory. At zeroperature it leads to d-dependent
decrease of\qcp, which translates into aN¢-dependent decrease of the critical temperafigre
at finite temperature. Table 1 shows the results folNh@lependent critical temperatufg in the
Polyakov-loop potential for massless flavors. Massive flalead to a suppression factor in the
B-function of QCD which modifieqy further. E.g. for 2+ 1 flavors with a current strange quark
massms ~ 150 MeV aTp(2+ 1) ~ 187 MeV is obtained.

Ne o] 1] 2|2+1] 3
To[MeV] || 270| 240| 208| 187 | 178

Table 1: The critical Polyakov-loop temperatufg for Ns massless flavors.

A second step implementstadependent running coupling in tive coefficient, analogous to
the N¢-dependence discussed above. One can argue that this isnaainiecessary generalization
because without g-dependenb, coefficient the confinement-deconfinement phase tranditisn
a higher critical temperature than the chiral phase transét vanishing chemical potential. But
this is an unphysical scenario because QCD with dynamicastass quarks in the chirally restored
phase cannot be confining since the string breaking scal&hbeuzero.

As for the N¢-dependence one can resort to perturbative estimates|dwirad for an addi-
tional u-dependent term in the one-loop coefficient of the Q&unction, which can be motivated
by using HTL/HDL results. This additional coefficient canfbeed such that the chiral transition
temperature and the confinement-deconfinement transitjoreaat some arbitrary non-vanishing
U. Interestingly, it turns out that then the transition tenapares agree for all values pf. This
U-dependence in thg-function then leads to @, with an additionalu-dependence, such that
To — To(u,N¢). Of course, these novel modifications should be viewed asghrestimate of
the u-dependence ofp. For a more quantitative analysis the non-perturbativaingof the cou-
pling in the presence of finite temperature and quark detsis/to be considered. This can be
incorporated in a self-consistent RG-setting.

The phase structure of the PQM model is determined by thevimhaf the order parameters
(0), (¢) and(@) and the grand canonical potential as a function of temperaind quark chemical
potential. The phase diagram in t(i€, u)-plane resulting from the two flavor PQM models in
mean-field approximation is shown in Fig. 3 (upper lines)e Battom lines in this figure display
the phase diagram of the pure quark-meson model withoutdhy@kov loop dynamic.
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Figure 3: Phase diagram of the quark-meson model with Polyakov loppdulines) and without Polyakov
loop dynamics (lower lines) in mean-field approximation.

With the Polyakov loop modifications a chiral crossover teragureT; ~ 184 MeV atu =0
is found with an uncertainty of 14 MeV originating in the error estimate30 MeV for Tp. As
an example for the estimate of the error, the two-loop ruprhthe gauge coupling leads to a
To ~ 192 MeV and hence & ~ 177 MeV. In the presence of dynamical quarks the Polyakop loo
shows also a crossover at the same pseudocritical tempevaiich can be read off from the peak
position ofd(qq)/dT andd(g)/dT.

Recently, a recalculation of the transition temperaturaliffierent lattices for two light and
one heavier guark mass close to their physical values yietmsistent results: On the one hand
using the Sommer parametgrfor the continuum extrapolation® = 192+ 7 MeV is found [28]
and on the other hand in another analysis with four diffesets of lattice sizeN; = 4,6,8 and 10 a
T. = 151+ 3 MeV is obtained [29]. Within an Functional RG approach &aal value of T, = 172
MeV [30] is achieved which again agrees witfi@a= 173+ 8 MeV obtained in former two-flavor
lattice simulations with improved staggered fermionsaxbiated to the chiral limit[31]. Using the
same parameters for the quark-meson model without the Rmhlaop modifications a crossover
temperature of; ~ 150 MeV emerges [10, 24]. This temperature gap calls foredfstudies both
on the lattice as well as analytical methods to resolve tisisrepancy.

With and without the Polyakov loop modifications the phassdim features a critical end-
point (CEP), where the line of first-order transitions terates in a second-order transition. Lattice
simulations are not conclusive concerning the existenddaration of the CEP. There are indica-
tions from lattice simulations at small chemical potemstidlat deconfinement and chiral symmetry
restoration appear along the same critical line in the pdasgram. For the PQM model with an
U-independently the coincidence of deconfinement and chiral transitiop at O disappears for
finite 4. The deconfinement temperature is larger than the corrdsgpihiral transition temper-
ature. This is an unphysical scenario because the decordiridemperature should be smaller or
equal to the chiral transition temperature. Contrarilfthwie u-dependenT; coinciding transition
lines for the entire phase diagram within an accuracy5fMeV are found.
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4. Summary

The phase diagram of hadronic matter is analyzed in the awiflquark-meson model by
means of a Wilsonian RG approach. This model captures ésisiestures of QCD such as chiral
symmetry breaking in the vacuum and can therefore yielda@éuinsight into the critical behavior
associated with chiral symmetry. Of special importancééseémergence of a CEP and the size of
the critical region around the CEP in connection with fluttrasignals in heavy-ion collisions.
Most studies of this issue have been performed in the mekhdmproximation which neglects
thermal and quantum fluctuations. These can be assessed RGhapproach which is able to
correctly predict critical exponents in the vicinity of tical points of the phase diagram.

In a mean-field calculation no TCP is found for the chosenrpatar set while the RG predicts
its existence as is expected from universality argumentecaBse of the Gaussian fixed point
structure at the TCP mean-field exponents are expected vehalse could verify. When effects of
finite current quark masses (or equivalently finite pion raggare included, a CEP emerges in both
the mean-field and RG calculation. By analyzing the scatad-cauark number susceptibilities with
the RG approach we found nontrivial critical exponents Wlage consistent with the expected 3D
Ising universality class. As a consequence of fluctuatibessize of the critical region around the
CEP is substantially reduced as compared to the mean-figldtse This is particularly true in the
u-direction.

One of the truncations of the quark-meson model is the laokxpficit gluonic degrees of
freedom. This is addressed by the introduction of the PQMehttht includes certain aspects
of gluon dynamics via the Polyakov loop and represents amahsynthesis of the two basic
principles of QCD at low temperatures: spontaneous chyrainsetry breaking and confinement.

A limited set of input parameters is adjusted to reprodutteeéaQCD results in the pure gauge
sector and pion properties in the hadron sector. Then the RQNEI correctly describes the step
from the first-order deconfinement transition observed iefgauge lattice QCD with & ~ 270
MeV to the crossover phenomenon with a pseudocrifigalround 200 MeV when two light quark
flavors are added. The non-trivial result is that the crossofor chiral symmetry restoration and
deconfinement almost coincide at smalkimilar to lattice simulations. Via RG arguments it is
possible to estimate aN¢- and u-dependence in the parameters of the Polyakov loop potentia
the critical temperature of the Polyakov loop model de@sagith increasindN; and . These
modifications yield coinciding peaks in the temperaturévaére of the Polyakov loop expectation
value and the chiral condensatetat 0. Interestingly, this coincidence of the deconfinement and
chiral symmetry restoration persists at finite These findings provide a promising starting point
for a functional RG study in the PQM model, and further eximms towards full QCD.
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