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1. Introduction

In the last three decades, many analyses confirmed thatatistisal hadronization model
(SHM) successfully reproduces particle abundances anduease momentum spectra in high en-
ergy collisions (/s> 10 GeV) of elementary particles and heavy ions [1, 2]. Thesalts triggered
a debate about the interpretation of the model [3, 4, 5, 6ln7lact, the fundamental assumption
of statistical equilibrium, cannot be explained, at leastlementary particles collisions, in terms
of a collisional processes at the level of formed hadrongabse the system expands too quickly,
and also in heavy ions collisions kinetic calculations se#wrconfirm this fact [6]. Therefore, the
apparent statistical equilibrium, must be an inherent @rypof the hadronization process itself (as
was pointed out by Hagedorn many years ago [8]), that is:dmedare born at equilibrium.

Apart from agenuinestatistical equilibrium within a finite volume, another sa€o has been
proposed to account for this peculiar feature of hadronywrtidn: the so-callephase space dom-
inance[5]. According to this model, the apparent statistical &grum is the result of a special
property of the dynamical matrix element governing hadnarission from pre-hadronic massive
clusters, which weakly depends on final state momenta aniglpaspecies. Thereby, a statistical-
like emission ensues [7] which has nothing to do with a prigpédefined statistical system, i.e.
there is no finite volume and neither entropy nor temperatarebe introduced.

As has been discussed in detail in [7] (and briefly summatiiz¢ige following), both genuine
statistical equilibrium and phase space dominance ardyhigin-trivial hypotheses, and before
discussing possible mechanisms responsible for the appageilibrium features it would be at
least desirable to discriminate between the two aforeroeed scenarios.

Another fascinating explanation of the observed statistguilibrium has been recently put
forward in refs. [4, 9] where the authors argue an analogywéet hadron emission and the Unruh-
Hawking effect. However, the discussion of the latter higpsts goes beyond our scopes.

The aim of this work is to describe a more stringent test ofuiyen statistical equilibrium.
For this purpose, we have analyzed the production ratesadfigixe channels, which have been
proposed in [7] as a more effective probe with respect tausieeé hadron multiplicities. In fact,
being far less inclusive quantities, exclusive rates cdngdensitive enough to finite-volume and
dynamical effects to allow drawing some conclusion.

Exclusive rates measurements are available at energigificagtly below 10 GeV. In calcu-
lating model predictions in this scenario, none of the @he\conservation laws, including energy-
momentum, angular momentum, parity and isospin can be ctedleas pointed out in ref. [10].
Therefore, in a statistical mechanics language, one mictlate themost general microcanonical
ensemblavhere all these quantities are properly conserved.

In two recent publications [11, 12], the microcanonicaltipian function has been calculated
in a field theory framework (in order to account for smallwole effects) enforcing the conser-
vation of the maximal set of observables pertaining to sp@oe symmetries (the orthochronous
Poincaré group): energy-momentum, spin, helicity, parity

Taking advantage of the formalism developed therein, weutated the probability of exclu-
sive channels also enforcing the conservation of the iateqnantities conserved by strong inter-
action (isospin, C-parity and abelian charges). We thenenagareliminary test onpannihilation
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at rest also comparing our results with the correspondirdiptions of the phase space dominance
model.

2. Statistical hadronization and phase space dominance

In the modern formulation of the statistical hadronizatinadel, as a consequence of a colli-
sion, a set of extended massive objects (catledtersor fireballs) is formed. Each cluster decay
into hadrons in a purely statistical fashion, that is, anytitadronic state within the cluster com-
patible with its quantum numbers is equally likely. The eotlon of all state within the cluster
defines the microcanonical ensemble of the cluster itsdifchvis the best suited framework for
evaluating observable quantities as statistical averddgmeertheless, because of difficulties arising
in microcanonical calculations, a comparison with the @atdeen mostly made as yet by intro-
ducing simplifying assumptions in the canonical (or graadonical) ensemble, which is far easier
to handle, thereby introducing temperature through a saglgiint expansion [13, 14]. In the case
of hadron gas, this is possible at relatively low values ofses and volumes [14, 15], around 8
GeV and 20 fr.

Apart from the genuine statistical equilibrium (and fronpknations based on other physical
models), the main option arising to account for these olagiemns is the phase space dominance
model. Its fundamental idea is the similarity between thasgical) phase space volume of a set
of particles, orchanne) {N;} = Ny,...,N¢ (whereN; stands for the multiplicity of the specig$
and the general expression of the decay rate of a massivel@dcduster) in relativistic quantum
mechanics.

If we let P be the initial four-momentumy the volume and lep, = (&,,p,) be the four
momentum of the particle; the phase space volur@gy;; of the channe{N;} turns out to be [13]
(in Boltzmann statistics):

VN 1 "
Q{NJ}ZW{HN_j![/dSp] }54<P—an> (2.1)

whereN = ¥ N;. This quantity is proportional to the probability of obsieiy the channe{N;} as
a consequence of the decay of a cluster of volvhand momentuni.

On the other hand, the expression of the decay rate into trenefi{N; } of a massive particle
in relativistic quantum mechanics reads:

1 1 [ rep]”
r{Nj}:W{UN_j![/Z—EJ_] }54<P—an>\'\/lfi\2 (2.2)

whereMs; is the Lorentz-invariant dynamical matrix element govegiihe decay. Assuming, for
sake of simplicity, spinless particlegv+i|> may in principle depend on all relativistic invariants
formed out of the four-momenta of tiparticles, as well as on all possible isoscalars formed out
of the isovector operators. Nevertheless, if we asshindo be weakly dependent on kinematical
variables, expression (2.2) becomes quite similar to (@ee not for the invariant measure (the
so-calledinvariant momentum spaa¥p,/2¢ instead of the proper phase spat#p) and for the
absence of any parameter connected to spacial extension.
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This phenomenon is callgthase space dominanbecause the decay rate is governed by the
available phase space volume rather than dynamical mé&trixemt. For instance, if we assume that
IM¢i|2 = aN, the whole dynamics reduces to the same multiplicativetenia for each particle in
the channel, it can be then shown that the expression of the manber of particles of the species
j is well approximated, at largd, by:

3
a @ efpej

(n)j =~ 25 ] 2, (2.3)

which is very similar to a thermal distribution which one aibs from (2.1) at large multiplicities:

(n)j ~ (2\7/-[)3 /dsp e P (2.4)
where = 1/T is the inverse temperature. Conversely the congBaint Eq. (2.3) is not a tem-
perature, rather a parameter which is related to the hathtioin scale. Yet, the ratios of average
multiplicities of particles of different species mimic aetmodynamic behavior. The authors of
ref. [5] work out a more specific example based on QED and tbaglade, quite reasonably, that
a fairly good fit to particle multiplicities may be obtainddritegral expressions like (2.3) are used
instead of an actual Boltzmann integral.

It should be emphasized that phase space dominance is & higitrivial assumption. In
fact, the recovery of a thermal-like expression like (2.&gs to a very special form of the matrix
elementMy; |2, where both the dependence on kinematical and isospinamiarwas disregarded.
If a different form, still perfectly legitimate and possblis assumed, the thermal-like behavior is
spoiled. Therefore, an observed phase space dominancdtihadton production is not a trivial
fact and tells us something important about the charatiterisf non perturbative QCD dynamics,
besides providing us with an empirically good model.

We conclude that a deeper test of the model is needed in ardderitify a genuine statistical-
thermal behavior and distinguish between it and possitdags-statistical models like phase space
dominance. Indeed, the study of average inclusive muditfs or inclusivepr spectra does not
allow to draw clearcut conclusions because these obsewvabé not sensitive enough to different
integration measures (i.¥.d%p versus dp/2¢ respectively in (2.4) and (2.3)) and much informa-
tion is integrated away. We will then study the productioteseof exclusive channels, that is the
relative probability of observing a well defined set of paes (channel) in the final state of a col-
lision. Thereby, we would compare directly with the expesital data expressions like.1) and
(2.2) which are more sensitive to the integration measure in thmembum integrals and the shape
of dynamical matrix element.

3. Probability of exclusive channels

A nice feature of low-energy exclusive-channels data i§ thaa very good approximation, all
collision energy is spent into particle production. Thisamethat one can assume the formation of a
single cluster at rest in the centre-of-mass frame (sedd¢haial sketch in fig. (1)), in clear contrast
with the physical picture of hadronization at high energlgeve the production of multiple clusters
proceeding from perturbative parton showers occurs. Tdhadhantage of having a single cluster is
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that the initial kinematical state is completely known,nggihe cluster’s mass and internal quantum
numbers fixed by/sand the initial state conditions. On the other hand, theivels small volume

n*@

T
0 3

Figure 1: Pictorial representation of a low energy 6 GeV) collision in the statistical model. One single
cluster is formed at rest with a madsks= ,/sand with quantum numbers given by the initial state conditio

(0(10) fm?3) of the cluster, entails some difficulties in the definitidritee probability of a channel,
or a general final state, with respect to the high-energy. caséact, the basic postulate of the
SHM tells us thatocalized statesxompatible with cluster’s quantum numbers are equiprahabl
but these states do not coincide with observable freegamisymptotic states. Such difference
is, for practical purposes, not an issue when the volumefficiamtly large, but it is relevant in
principle and may result in quantitative differences whesolume is comparable with the pion
Compton wavelength.

The SHM assumes that the cluster can be described as a ndatisticsal mixture of multi-
hadronic statefh, ) compatible with its initial quantum numbers. Accordinghg can write down
amicrocanonical partition functiof [7]:

Q=7 (tvIPlh) 31)

Pi being the projector on the initial state of the cluster:
Pi = PpnnPusPcPq (3.2)

wherel andl3 are the isospin and its third compone@tis the C-parity, Q = (Q1,...,Qu) a set
of M abelian charges (in fact they are 2, baryonic number andgreess) and whefpj,n is
the projector over the maximal set of space-time obsersalle. an irreducible state of the or-
thochronous Poincaré group: four-momentBrspinJ and its third componemt; parity . The

10f course, the projectioRc makes sense only i = 0 andQ = O; in this casePc commutes with all other
projectors
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internal symmetry group we are considering in this work s igospin group SU(2) and U(1)’s
related to baryonic number and strangeness, thus, we assu3g flavour symmetry to be com-
pletely broken, i.e. SU(3) SU(2)xU(1).

It must be emphasized, that the statgs in (3.1) are not the observable asymptotic free states
|f) of the Fock space. Instead, a suitable probability defimisbould involve these states. To do
this, one can first recast the microcanonical partition fienc(3.1) by using the completeness of
stated f):

Q= %<m!Z\f><f!Pi\hv>
= Z<f’Pi%’m><m‘f>EZ“’PiPV‘D (3.3)

wherePy = 3, |hv)(hv| is the projector onto localized states. We note that theehgstession of
Q in Eq. (3.3) is a proper trace, whereas it was not in Eq. (31the stateshy) do not form a
complete set of the full Hilbert space.
In [16] (and also in a forthcoming publication [17]), it hasdm shown that, for a cluster at rest
and spherical in shape, a good definition of the probabiliy the ideal gas) is:
(fIPiPv|f)

pi=—g (3.4)

According to Eqg. (3.3), the microcanonical partition fuootcan be then expressed as a sum over
all possible free multiparticle statéb) of the state weightoy:

QEZ@]‘ where  wr = (f|PiPy|f) (3.5)

is proportional to the probability of an asymptotic stete

Pf—Q-

In turn, the microcanonical partition function can be cidted as an expansion over all possible
channels:

(3.6)

Q=Y Oy (3.7)
{Nj}

The quantityQy, is defined as thenicrocanonical channel weigletnd it is obtained integrating
the state weightos on kinematical variables. In formula, writing a multipaté state asf) =
I{N;},{p}) where{p} stands for set of kinematical variables (momenta and hiefgiof particles
in the channel, we have:

Qpy = 3 wr = > (N} {pHPiPv{N;}. {p}) - (3.8)
ip} {p}

The channel weigh©y; is proportional to the decay probability in the chanifisl } of a
cluster with volumeV and internal quantum numbers definedfy Qy,; has been calculated in
ref. [12] for the ideal relativistic gas, enforcing the maail set of space-time symmetries, i.e. for
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the projectoiP; = Ppjin, that is the projector on an irreducible state of the orthacbus Poincaré
group 10(1,3).

The projectoPy, has been studied in detail in ref. [11] where it has been ddfima quantum
field theory framework in order to properly take into accotsittivistic effects due to the finite
volume. In fact, for systems whose linear extension is coaiga to the Compton wavelength of
involved particles, a fixed number particle description ofifined states is not appropriate. One
must rather identify localized states as stag@f the quantum fields associated to particles within
the system region. For instance, in case of only one scatticlpa

Py = /V 20|9) (9| (3.9)

where|@) = ®«|@(x)) and Z¢ is the functional measure; the functional integration niesper-
formed getting rid of the degrees of freedom outside theesysegionV [11]. A generalization of
Eq. (3.9) to particles endowed with spin has been providedfirf12].

As discussed in [12, 16], the state weight of a cluster whédpherically symmetric in shape,
does not depend on its polarizatian Since we will assume the cluster to be a sharp sphere, we
will use a state weight which has been summed @dvand divided by(2J + 1). Finally, if we let
N be the total number of particles in the channel, Z?:l N; = N; S; andn; respectively the spin
and the intrinsic parity of thg-th particle speciesp, the four-momentum of the n-th particle, the
final expression for a cluster at rest is [12]:

o Z[I_l ]i/ [ln, /d3an] (3.10)
><54< S ) Y[ (3+2) 4] ﬁ{ﬁ[s.n[g@,wr“ﬂm]

k N;
(]‘L H R (Ppy(ny) — R (@)pny) + NN M |'| Re? (Ppy(n) + R3 (t,U)pnj))

J=1nj=

where
ko
Mi=[1n" (3.11)
JI:!I‘ J

andp = (py,...,Px) is a set of permutationg; belonging to the permutation grody;; X (p;j) is
the parity of thej-th permutation and; = O, 1 if the specieg is a boson or a fermion respectively;
the symbohy, (p;) in (3.10) stands for the number of cyclic permutation wiflelements irp; so
th'sttz‘,’;’j:1 njhn; (pj) = N; 2. In Eq. (3.10),F\§s>‘s are Fourier integrals over a spherically symmetric
volume, and for a sharp sphere they read:

X eix~(pp<n)—R§1(w)pn) (312)

R (Pp(n — R3 (W)pn) = z
_ R iaPpm — Rs (¥)PnlR)
2re IPo(n) — R (¢)pnl

2The set of integerby, ..., hy = {hn}, is usually defined aspartition of the intege in the multiplicity represen-
tation.
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R being the radiusj; the spherical Bessel function of the first kind aRg( () a rotation of an
angley along thez axis.

We will give here the generalization of (3.10) where alsefinal quantum numbers are fully
conserved. The calculation has been made in [16] and willhogvs in detail in a forthcoming
paper [17].

In order to write the general expression of the channel mamonical weight one needs to first
introduce the concept ¢fpeandspecief particles: particles species differ by whatever quantum
number whereas particles belong to the same type if theygireflavoured mesons belonging to
the same isospin multiplet or if they are particle-antiigétpair. Thus, ifN is the total number of
particles in a channgIN;} = (Ny,...,Nk), we have:

k K
N=3 Nj= ZL,-
=1 =

N; being the multiplicity of speciegandL ; the multiplicity of the typej; k be the total number of
species ani be total number of types.

If xc denotes the product of all intrinsic C-parittesf particles in the channel, the micro-
canonical channel weight reads:

Q{Nj}_{z][ﬁ ] / [ﬂ N’ ”J /d3pnj
Y ) s.n[<J+ Dol S

K L K L
(I_l |_| F pPJ 1 —|—|_||_| [l [l pPJ +R3 (W)plj)>

J=1lj=1

K Lj K Lj
{Nj} I—l |—| —{Nj} I—l |—|
X (% ) (|7| L 5gp (l a| +CXCf ] I I 67(1[’](' mJ)

lj=1 lj=1

[ <,,{|'J}y] 1, 13) (1, 15| [ﬁ {1,100 ] (3.14)

7‘@1}(.7.3)5[ <,,{|"}r]u DINE [ﬁu,, S ]

are isospin coefficients which can be calculated numeylcaﬂla sum of recoupling coefficients,
and the Kroneker's) factors in (3. 13)5 ” and 6q | , come from vanishing scalar products
between single particle states with dlfferent baryonlc bemand strangeness. Indeed, integrals
over particle momenta in Eq. (3.10) cannot be solved amalj§i The only attempt to evaluate
a similar expression for a gas of spinless patrticles in thgelaolume limit was made in [18] by
using a Monte-Carlo method. We used a similar numerical atetbr the calculation of Eq. (3.10)
which is described in [16].

3This factor includes additional charge conjugation phaseofs of light-flavoured mesons.

(3.13)

where the factors:

T:x T:x

j{NJ} (l | )
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4. Interacting hadron gas

In this work we will account for interactions treating on aguel footing (as free particles)
resonances and stable hadrons with respect to strongatiters, by using the definition (3.4) for
the probability. This approach, known as tiedron resonance gasodel, is quite popular and well
known because matches the physical intuition (in the zedihalimit, it is a natural expectation
that resonances behave like stable particles), whereasittiso for its theoretical basis which
has been given by Dashen, Ma and Bernstein in the late 60&fifl9] and it is known as the
Dashen Ma Bernstein theorem (DMB). Particularly, the argherote the microcanonical partition
function in a very convenient way as the sum of the free manoaical partition function plus
an interaction term involving the scattering matrix. A mdegailed discussion of this theorem is
postponed to a forthcoming publication [20], nevertheléss worth to stress in advance some
important aspects. First of all, it must be mentioned that BiMB theorem (thus the hadron
resonance gas model) is valid in the infinite-volume limih fact, a derivation of the theorem
for a finite volume seems still to be unpractical, therefarse should keep in mind that, in what
follows, finite-volume corrections of the interactions tridvution are neglected. Secondly, in the
simple hadron resonance gas model (as it will be shown in) [28it of the interaction term is
not included as it depend on unknown coefficients and alsrfarence terms between nearby
overlapping resonances are neglected.

Unfortunately, a precise quantitative estimation of thegggroximations on the production rate
of exclusive channels is still an open issue. However, taesearguments (whose discussion will
be in [20]) to argue that our final results shouldn’t be dracadly affected by them. This is also
supported by the success of the hadron resonance gas maeaebiunting for interactions among
hadrons in high energy collisions, where many quantitaivalyses have been made [1, 2].

In order to get the microcanonical weight ofimal channelwith only strongly stable hadrons
one should then make a weighted sum of free microcanoniaghts(3.13) of channels including
both hadrons and resonances (handled as free particledligiitibuted mass) eventually decaying
into the final hadrons of the channel.

Therefore, given a final channg¢N;}, one should find all possiblgsarent channelsvhose
hadrons and resonances decay into it. The search for alitpelrannels is a multi-step recursive
problem in that many generations can be involved. If we debgt{N;} ) a channel which can
directly decay into the channéN; }, by {N;} ) a channel which can directly decay{iN;} ) and
so on, one has to find all possible decay trees like those showig. (2). In view of the large
number of resonances, this task is not a trivial one; a dait@gorithm has been devised which is
described in [16]. The probabilitg;y;, of observing a final channg¢N; } can then be expressed as
a finite sum:

Piny B oy = Qg +BR) Qg g +BR2)BR1) Qv+
+ BR(l)'Q{Nj}<1), + BR(Z)/BR(]_)/Q{NJ}<2), +... (4.2)
where BR;) is the product of branching ratios of particles in the char{M };, decaying into
particles in the channglN;}_1) and wherewyy;y is the channel weight where contributions of
parent channels are included.
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Figure 2: Examples of possible decay trees for a four particles cHa@ieles encompass decay products
of the patrticle at higher level.

4.1 Strangeness suppression factor

We allow deviations from statistical equilibrium of chalm@volving particles with strange
valence quarks introducing a phenomenological parantbestrangeness suppression facier
This parameter has been widely used in inclusive hadroniphcity analyses and it is likely to be
needed also in the analysis of exclusive rates at low endnggrder to have agreement with the
s definition in the canonical and grand-canonical limit, ohewdd multiply the microcanonical
weight of a channel bygj sj being the number of valence strange quarks of each particle:

k

Ot — v Ni
o= 1108

The ys factor also applies to neutral mesons with valence strangekg liken, @ etc. Since the
wavefunction of such particles is in general a superpasiilke C,uti 4 Cydd -+ Csss with [Cy|2 +
|Cq|? + |Cs|? = 1, only the componensf the wavefunction is suppressed, i.e. we multiply by:

Q) (4.2)

ICsl?Y3+ (1—|Csf?) .

We have used mixing angles quoted by the Particle Data Bak [2

5. Antiproton-proton annihilation at rest

In the past, there have been several attempts to reprodurerhanultiplicities and some
multi-pion(kaon) channel production ratios in low energyee collisions [22] and p annihilation
at rest [10] by using statistical-thermodynamical or statal-inspired models. Yet, to simplify
numerical calculations, none of them properly took intocaet the full set of conservation laws,
which is a clear drawback because in few body decays all of thee indispensable. Nowadays,
thanks to the increased computing power and to the purpdselged numerical techniques, we are
in a position to make a thorough test of the statistar@atzin a more rigorous formulation, taking
into account properly conserved quantities and the finiterme of the hadron-emitting source.

Antiproton-proton annihilation at rest is the system whemnech data on exclusive decays
channels in 2, 3 and 4 bodies have been collected. Howewemrthihilation proceeds from a
mostly unknown mixture of angular momentum and isospinestaind the quantitative analysis

10
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turns out to be quite complicated. Most of the data analyzeceviaken by stopping low-energy
antiprotons beams in liquid hydrogen. In this situationretgnium atomic state is formed, and
the annihilation takes place with the orbital angular motmerl = 0 orl = 1, whereas states with
higher values of the angular momentum are strongly suppdel@3]. Forl = 0 the initial states
are the spin-singletS, and the spin tripletS; with quantum numbers:

FFClg)=0" and JI°Bg)=1" (5.1)
whereas fol = 1 we have:
JPC(lpl) — 1+7’ JPC(SPO) — O++, JPC(3P1) — 1++’ JPC(3P2) — 2++. (52)

Altogether, there are two initial wavefunctions for ankdtions occurring irs—wave and four wave
functions for annihilations occurring iR—wave. The precise fraction &f—wave annihilations in
liquid (that we will denote withfp) has been the subject of a longstanding controversy as it was
measured by several groups with inconsistent results [jom the latest data coming from the
Crystal Barrel experiment, the value one obtain§is- (13+4)% [23].

In order to write the branching ratio of a certain final chdreiesimplifying the notations as
much as possible, let us label with 1 and 2 the states in (5.1aJ”¢(1) = 0~F with J; =0
and JP¢(2) = 17— with J, = 1. Accordingly, the states in (5.2) will be labeled with 3,54,6
respectively. Altogether, if we let Beh) be the branching ratio in the final chanmélof a given
initial statei, the total branching ratio tuns out to be:

BR(ch) = (1— fp) ij?a BRi(ch) + fp Eiwi"a BRi(ch) (5.3)

where the first and the second sum account respectivelg-farave andP—wave annihilations.
The symbolswiS andw! in (5.3) stand for the purely statistical weights of the gas initial wave-
funtions, namely:
23 +1 23 +1
W= WS (54)

whereas the factorg are calledenhancement factomnd describe the departure from a pure sta-
tistical population ¢ = 1). This phenomenon is due to the strong Stark mixing whicistzmtly
repopulates the fine and hyperfine levels in liquid hydrogj.[ These factors have been calcu-
lated in ref. [24] with an x-ray cascade calculation by ugimge different optical potential models
of the p interaction: DR1, DR2 [25] and KW [26]. In tab. 1 the valudstaoned therein are
reported.

The eq. (5.3) takes into account all possible annihilatjgin states. Yet, also total isospin can
assume two values:= 0 andl = 1. Therefore, we will assume an unknown statistical mixtfre
| = 0 andl = 1 initial state disregarding interference terms and iniohag a free parametdi_g,
i.e. the fraction ol = 0 state:

fi=0/0,0)(0,0]+ (1— fi=0)|1,0)(1,0|

where isospin states have been denotedlhas.

11
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| | DR1| DR2 | KW |
1.032[ 1.028] 1.060
0.989] 0.991| 0.980
0.856| 0.933| 0.809
2.556| 2.076| 2.176
0.685| 0.541| 0.703
0.964| 1.041| 1.058

R|PNLNP|P|P

Table 1: Enhancement factors obtained with an x-ray cascade ctitmulay using three different optical
potential models: DR1, DR2 [25] and KW [26]

f|1:0 1:|2:0 f|3:0 1:|4:0 f|5:0 f|6:0
0.56 | 0.56] 0.62] 0.95] 0.13| 0.60

Table 2: Isospin probabilities forp atomic states.
Therefore, the full expression of the branching ratio twuasto be:

BR(ch) = (1— fp) gwisa [f_oBRI=0(ch) + (1 — f_o)BRI=*(ch)]

+ fpiiwip & [f_oBRI=C(ch) + (1 - f{_¢)BRI=*(ch)] . (5.5)

where BF{ (ch) and BR=1(ch) are the branching ratio in the final chancliwhen the spin state
is i and the isospin state is respectivél 0 andl = 1. The factorfl':0 is the probability that the
statei has isospin 0 and, in principle, it can vary from 0 to 1. For eepp initial state we have
f,‘:0 = 1/2 for anyi. Nevertheless, at short distances (1 fm), the neutron-antineutron admixture
in the protonium wave function can dramatically affect tharing of thel = 0 andl = 1 states
within a givenJPC state. These probabilities have been calculated in [27htipducing meson-
exchange potentials to describe theipteraction. Their values reported in tab. 2 refers to DR2
optical model with 21+ w exchange potential.

In order to calculate the branching ratio in eq. (5.5) withNgHne need the branching ratios
in each possibldPC and isospin state. In other words, for a given final charfidgly, we must
evaluate:

BRI ({Ni}) =l = ;2'“;} =01, i=1....6 (5.6)
wherep{'iilj} and w{N , are the probability and the channel weight defined in (4.49,Q, ; is the
microcanonical partition function, which is obtained asimsver all possible channels according
to eq. (3.7). In eq. (5.6)l, stands for the isospin & 0 or | = 1) and the index labels the six
possibleJPC states in (5.1) and (5.2).

As a first analysis, we made a preliminary comparlson withtaoBéwo-mesons exclusive
channels. In this case the channel welgj']il n coincide WIthQ{N ) (see eq.(4.1)). The result we
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obtained is shown in fig. 3. This plot has been obtained pmifay a coarse scan of the parameters

X  t ppannihilation at rest o data
@ [ 0 model
- ¥ 4
i S ; a
5 : : ’ * ;% 'P
- HIS - B - B K K
10 | H g T ;o
F i 3*4\1 Fa BN
[ 1 ¥ U:‘ o
: ?’? i H f’ * -: : B
N U A R - o D
WS R W
AT I T
10 i o Vo 1] Y
XS 4
SR o i R p
Loy LA ¢
H ¢0
-4 t i
10
F p=0.09
[ o= 0.28 f.= 5.3%
PRI S T I S S T S ST S S PRI B S ST |

P e’ ®n n wrn wn p°p°wn w K'KKK
rinin p’pwnn p’n Bbta,an p’wwp’n KKK K
P) 's;’S, (PSS,

Figure 3: Comparison between measured branching ratios (black dbtgrious two-mesons channels
and the prediction of the SHM (white squares). We used exynial data quoted in ref. [23]. Branching
ratios (where not differently specified) refer to measurasienin liquid hydrogen without any initial-state

selection. Conversely, when the symbtsis,>S; and(P) appear, only annihilations froh&, 3S; or P—wave
initial state have been selected.

¥s and theenergy density defined as:

M 3M

P=V = o -7

whereM = /sis the cluster's mass. We allowed the parametets vary between the minimum

and the maximum value predicted by the different opticakeptitils (see tab. 1) enforcing the
normalizing conditions:

fiaw?: 1, gaw:’ =1. (5.8)

The parameter‘ﬁ‘:0 have been also allowed to vary within reasonable limitsglethe minimum
and maximum values in tab. 3; whereas fprwe have chosen the range® < fp < 17%: The
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®  F ppannihilation at rest o data
@ [ 0 model
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10 |
-
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10 =
X
| o
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[ vs=0.24 f=5.0%
[ 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 1 I
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Figure 4: Comparison between measured branching ratios (black dbtgrious two-mesons channels
and the prediction of the Phase space dominance model (sdutres). We used experimental data quoted
in ref. [23]. Branching ratios (where not differently spfel) refer to measures made in liquid hydrogen
without any initial-state selection. Conversely, whengiimbols'S,3S; and(P) appear, only annihilations
from 1Sy, 3S; or P—wave initial state have been selected.

f|1:O 1:|2:0 f|3:0 1:|4:0 f|5:0 1:|6:0
min | 0.5 | 0.5 | 0.6 | 0.9 | 0.05] 05
max| 0.6 | 06 | 0.7 | 1.0 | 02 | 0.7

Table 3: Maximum and minimum allowed values of the isospin prob#bsi

best values of the whole set parameters as been chosen a thataminimize the functiory?
defined as:

» < (BR¥P(ch)—BR®"M(ch))?
X = ; 0®P (ch)? 4 gSHM(ch)2 9

where the sum runs over all measured two-mesons channelg. (B.9),
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o®®(ch) andaS"M(ch) are the uncertainties on measured branching ratios anceandhel
calculation respectively. The latter being nothing butdtagistical error owing to the finite num-
ber of sampling in Monte-Carlo integration. The same ansliias been repeated by assuming
the phase space dominance model (fig. 4). As one can see hichses, the order of magnitude
of exclusive ratios is fairly reproduced although some dehrshows significant discrepancies.
This might owe to a too simple description of interactionsoamstable hadrons (with the hadron-
resonance gas model), or to neglected effects like isogpémnférence. Indeed, also the very fact
that proton and antiproton are particles endowed by inmactstre could play an important role.
This argument is also supported by ongoing analyses of SH&ten collisions aty/s < 2.5 GeV
(that will be shown in a forthcoming paper [17]) that seemshow a good agreement with exper-
imental data. However, if from one side this result seemsetericouraging as both models catch
a large part of the phenomenology, on the other side thiséestot help us to distinguish between
phase space dominance and SHM. In fact, though a closerdwekls that the SHM calculation is
slightly closer to the data, both models give too similautssand no clearcut conclusions can be
drawn.

6. Conclusions

We have performed a preliminary test of the SHM on productaies of exclusive channels
in pp annihilation at rest. The calculation of such quantitieguired a formulation of the SHM
in its fundamental microcanonical framework, enforcing thaximal set of conservation laws
relevant to strong interaction and space-time symmetdesrding to the formalism developed in
refs. [11, 12]. The complication of the annihilation progeshich proceeds from many initial
pp atomic bound states, required the introduction of se\fezal parameters, which made the test
not as clean as it would have been desirable. AltogetherSHid fairly reproduces the general
trend of the experimental data although large discreparagpeear for some channels. The analysis
has been repeated by assuming the phase space dominandethadethe main option (besides
SHM) to account for the apparent thermal-like features efthdronization process. The result we
obtained is qualitatively the same as SHM and, unfortupatiels specific test proved to be unfit to
discriminate between these two different scenarios.
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