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1. Introduction

At TeV colliders, the electroweak corrections are strongly enhancéajayithms of the form
a'ln (QZ/MZ), with M = M,,, ~ M, and j < 2|. These logarithmic corrections affect every re-
action that involves electroweakly interacting particles and is charactdrizedattering energies
Q? > M?. ForQ ~ 1TeV their impact can reach tens of per cent at one loop and severcepe
at two loops (see for instance Refs. [1,2] and references ther&mir origin is twofold. The
renormalization of UV singularities at the scalg S M gives rise to terms of the form (@?/u32).

In addition, the interactions of the initial- and final-state particles with soft ardMinear gauge
bosons give rise to mass-singular logarithms, i.€QfM?2) terms that are formally singular in
the limit M — 0. Since they originate from UV, soft and collinear singularities, electaweg-
arithmic corrections have universal properties that can be studied iacags-independent way
and exhibit interesting analogies with QCD. At one loop, the leading logarithbhs &nd next-to-
leading logarithms (NLLs) factorize and are described by a generalflarthat applies to arbitrary
Standard-Model processes [3,4]. The properties of electrowegakitbmic corrections beyond one
loop are investigated with two complementary approaches in the literatureofijtin equations,
which are well known in QED and QCD, are applied to the electroweak thiaargder to obtain
the higher-order terms through a resummation [5-9]. In this approachaheien is split into two
regimes, where the electroweak interaction is described in terms of 8U(2) and Um(1) sym-
metric gauge theorie’sThis splitting is assumed to correctly reproduce all relevant implications of
electroweak symmetry breaking in LL, NLL and NNLL approximation. (ii) Thisamption and
the resulting resummation prescriptions can be checked and improved by wieaxplicit dia-
grammatic two-loop calculations based on the (spontaneously brokenpelealt Lagrangian. So
far, all existing diagrammatic results are in agreement with the resummatiomiptiess, however
up to now only a small subset of logarithms and processes has been cdrapplieitly. While
the LLs [11] and the angular-dependent subset of the NLLs [12¢ leaen derived for arbitrary
processes, complete diagrammatic calculations at (or beyond) the NLLebdgebnly for matrix
elements involving massless external fermions [13—15]. In the literaturexpitcit NLL calcula-
tion exists for reactions involving massive scattering particles.

In the following we present a recent two-loop NLL calculation [16] fefermion processes
f, f, — f5... fy involving an arbitrary number of leptons and/or quarks. While all fermioitls w
m; < M are treated as massless, the top-quark mass effects are taken intd.a€ooatinvariants
rj = (P +p; )2 we assumer;; | ~ Q? > M?, and the differences between the W, Z, H and t mass are
taken into account. Soft and collinear singularities from massless virtwabps are regularized
dimensionally and arise aspoles inD = 4 — 2¢ dimensions. For consistency, the same power
counting is applied to IfQ?/M?) and ¥/¢ singularities. Thus, in NLL approximation we include
all e *InI=K(Q?/M?) terms with total powelj = 2,1 at one loop and = 4,3 at two loops. The
photonic singularities are factorized in a gauge-invariant electromagnetic e remaining part
of the corrections — which is finite, gauge invariant, and does not depetite scheme adopted to
regularize photonic singularities — contains onlyQ3/M?) terms. The divergences contained in
the electromagnetic term cancel if real-photon emission is included.

1A new approach based on soft-collinear effective theory has baestoped in Ref. [10].
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2. Extraction of soft, collinear and UV contributions from Feynman diagrams

Let us consider the two-loop diagrams that produce NLLs within the 't Hé&@ynman gauge.
These diagrams are obtained from the LL one-loop diagrams, i.e. diagrdimexternal-leg ex-
change of soft-collinear gauge bosons, via insertions of one-loolisgiams that produce an
additional logarithm. We start with the diagrams that do not contain Yukawaittens,

HereV, = A,Z,W*, and the external lineis j,k = 1,...,n are massless and/or massive fermions.
In the first four diagrams i (2.1) the gauge bosgran couple to an external line or to an internal
propagator. In the latter case the only relevant region is the one Wheseollinear to an external
fermion and, using collinear Ward identities, we find that this type of contribattancel [15, 16].
The remaining diagrams contain a tree sub-diagram that correspondsdndimal process and
depends only on the external momeft@hese diagrams are called factorizable, since their NLL
contribution factorizes into the-fermion tree amplitude times a two-loop NLL factor. For instance,
the factorizable diagrams associated with the fourth diagrain in (2.1) are

(2.2)

To extract the NLLs of soft/collinear origin, we exploit the fact that in th&/sollinear limit the
coupling of a gauge bosov to thei-th external fermion yields a factor2elY (p; + g)#, where

g and p; are the gauge-boson and fermion momenta, V\AIiYiIis the gauge-group generator. For
instance, for the last diagram in (2.2) we obtain

“45/ qulquZ _8|e:<;(-:]28\71\72\73 [gulllz(ql - q2)ﬂ3 + permJ |fl|52|§3
> ) @M (g} —MZ)(@3— M3 )(eg—Mg)(1—m2)(1Z—mB)(13 - m})

whereq; = —0; — 0, |; = p— Gy, |, = P, — a, andl; = p; — g5. Then-fermion tree amplitudez
must be regarded as a vector carrying SU(2) indices associated witlosipéniof the scattering
fermions, and the generatdf$act as SU(2) matrices on theh fermion.

In addition to soft/collinear contributions, there are also two-loop NLL termsatiae from
UV divergences in the one-loop sub-diagrams. In this case, the UV siitgadare removed by
means of a minimal subtraction at the scafe= Q. As a consequence, only those UV-divergent
sub-diagrams characterized by scales of oMér« Q? produce NLL terms. In particular, non-
factorizable diagrams do not produce NLL terms of UV origin. The explaitdrization of the
NLL contributions of UV origin is obtained by means of projector techniqués 16] since the

Vl V2 V3
X Vs 1,

2In these tree sub-diagrams, which are denoted with an ﬂ (2.2), tyedoomenta must be set to zero. This
follows from the collinear Ward identities.
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soft-collinear approximation is not applicable in this case. After the aboviioned minimal UV
subtraction, we perform a finite renormalization that restores the onrairatialization of the wave
functions and translates the couplings to the minimal-subtraction scheme aalibhgsc

For processes involving heavy quarks, in addition to the contributions liede also dia-
grams with Yukawa interactions contribute. Many of them are suppressetbdhe behaviour of
the interactions of scalar fields in the soft/collinear &hd- 0 limits. Only three types of diagrams
are not suppressed,

(2.3)

Moreover it turns out that the sum of the NLL terms resulting from theseraiag cancels owing
to global gauge invariance of the Yukawa sector [16]. As a conseguefukawa interactions
contribute only through fermionic self-energy diagrams that appear ireti@malization of the
heavy-quark wave functions.

3. High-energy expansion of theloop integrals

The loop integrals have been calculated infes> M? limit to NLL accuracy using the sector-
decomposition technique [17, 18] and, alternatively, the method of eigabg regions [19-22].

3.1 Sector decomposition

Sector decomposition is based on the Feynman-parameter representaptmitirtey general
properties of soft, collinear and UV singularities, one can factorize tiegelarities in Feynman-
parameter space in such a way that the divergent integrations assumdadtarm. If all parti-
cles are massless these singular integrals are trivial and produce shpples [17]. In presence
of massive patrticles, the general solution is available to NLL accurady Tl8s permits to con-
struct, in a completely automatized way, finite integral representations foro#fécents of all
NLL terms of typea"‘lnj"‘(Qz/Mz). The integrands are smooth and can easily be integrated nu-
merically? Moreover, although these integrals do not have a standard form, itdutrtat they
are relatively simple. In practice they can be solved in analytic form by melestandard tricks
(partial fractioning, integration by parts, etc.) combined with a table of elemeimizgrals. Also
this part of the calculation is highly automatized, however, the set of integratles might need
to be extended when new diagrams are computed.

3.2 Expansion by regions

Within the expansion-by-regions method [19-22], the integration domaireddtip momenta
is divided into regions corresponding to the asymptotic limit considered. Thgrand is appro-
priately expanded in every relevant region, and each of the expdaded is integrated over the
whole integration domain. Each expanded term has a unique order ingpoiW@mandM, but the

3This holds only in the unphysical region where all invariantsare negative, but allows for very useful checks.

4



Two-loop electroweak Sudakov logarithms for massive farracattering Stefano Pozzorini

on-shell momentg; of massive fermions involve two scalgs, ~ M? and 2p,p; ~ Q?. In order to
separate these scales, the massive momenta are reparametrized in terntdiké Iighmentap;’;

asp, = p. + p?/(2p P;)P;- For the loop integrals needed in this calculation, the following regions
for each loop momentutkare relevant: hard, soft and ultrasoft regions, wikéiie of the ordeiQ?,

M? andM*/Q?, respectively; collinear, softcollinear and ultracollinear regions, wké collinear

to one of the external momenta akdlis of the ordetM?, M4/Q? andM®/Q?, respectively. The
latter two regions contribute only if the external fermions are massive. Xpeneed loop integrals
have been evaluated using Mellin—Barnes representations, from wieiextiaction of NLLs has
been automatized. In addition, Mellin—Barnes representations of the amgsg integrals have
been used to check the completeness of the set of regions used fopamsiax.

4. Resultsand conclusions

The renormalized 2-loop NLL amplitude is expressed in terms of combinaticBb (f) ma-
trices acting on the tree-level amplitude. This expression is simplified by mé&hi®) algebraic
identities and additional relations resulting from global gauge invarianhe.fihal result is con-
sistent with the double-exponentiation forrtila

a a N a n

M =exp|l — § M| exp| — sew ) (14 = ¥ 8% | A, 4.1

< P 87'[”2:1 g P 87'[”zzldl +87—[i,12:1 1] //O ( )
. 17 i

The termé,?ew behaves as if all electroweak gauge bosons would have the samevheass is
symmetric with respect to SU(RU(1) transformations,

==y M) e () + BT ) e ). (42)

HereT;® andY; are the generators of the SU{)(1) group,g, , are the corresponding coupling
constants, anug the one-looB-function coefficients [15]. The NLL functions read

2 1
I(g,M,r)=—L%— §L3£— 21L“52+

QZ

2

3 <r> AR L

2 "\ @) ceigemz

<2|_+ L% + %L3£2> (4.3)

andJ(e,M, u3) = [1(26,M,Q?) — (Q¥/3)*1 (£,M,Q?)] /¢ with L = In(Q?/M?). In E3)CE" =

v V1Y, and the Yukawa terms proportionalrtg contribute with factorgiy, = 1, yf = 2,y§ =0,

for heavy quarks = b,t with chirality k; = R,L, andy; = 0 otherwise. The terng{™ in (W)
depends on thg—W mass gap and contains all soft/collinear singularities due to massless pho-
tons. These singularities involve single and doublgoles. Thus the term&?ew and (SIJZ in (1)

need to be expanded up &(£?). We find thatci,‘l?m behaves as in QED [16]. Finally we find that

all contributions depending on the Z-W mass difference can be factdritethe one-loop term

5% =—11£In (MZ/MG,) [2L 4 2L% + L3€?]. Apart from these latter (iMZ/M3,) terms, all effects

of symmetry breaking (terms proportionalg, /M., mixing parameters and vacuum expectation

41n the following we sep3 = Q%% /(4m).
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value) disappear due to non-trivial cancellations between differgmriran diagrams. These can-
cellations originate from relations between the gauge-boson masses, thg paxameters, and
the vacuum expectation value. The result is in agreement with the resummiasaniptions pro-
posed for massless [6, 8] and massive fermions [7] and exhibits stafigias with the general
form of two-loop singularities in massless QCD [23].
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