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We study the asymptotic behaviour of two-loop electroweak corrections at energiesQ2 ≫ M2
W,

where logarithms of the type ln(Q2/M2
W) become dominant. The calculation of the leading and

next-to-leading logarithmic terms for massless and massive fermion-scattering processes is sum-

marized. The derivations are performed diagrammatically within the spontaneously broken elec-

troweak theory. We find that the soft and collinear singularities resulting from photons can be

factorized into a QED-like term and that, up to logarithms ofthe Z–W mass ratio, the effects of

symmetry breaking cancel. This result supports resummation prescriptions that are based on a

symmetric SU(2)×U(1) theory matched with QED at the electroweak scale.
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1. Introduction

At TeV colliders, the electroweak corrections are strongly enhanced bylogarithms of the form
α l ln j

(

Q2/M2
)

, with M = MW ∼ MZ and j ≤ 2l . These logarithmic corrections affect every re-
action that involves electroweakly interacting particles and is characterizedby scattering energies
Q2 ≫ M2. For Q∼ 1TeV their impact can reach tens of per cent at one loop and several per cent
at two loops (see for instance Refs. [1,2] and references therein).Their origin is twofold. The
renormalization of UV singularities at the scaleµR

<
∼ M gives rise to terms of the form ln(Q2/µ2

R).
In addition, the interactions of the initial- and final-state particles with soft and/or collinear gauge
bosons give rise to mass-singular logarithms, i.e. ln(Q2/M2) terms that are formally singular in
the limit M → 0. Since they originate from UV, soft and collinear singularities, electroweak log-
arithmic corrections have universal properties that can be studied in a process-independent way
and exhibit interesting analogies with QCD. At one loop, the leading logarithms (LLs) and next-to-
leading logarithms (NLLs) factorize and are described by a general formula that applies to arbitrary
Standard-Model processes [3,4]. The properties of electroweak logarithmic corrections beyond one
loop are investigated with two complementary approaches in the literature: (i) Evolution equations,
which are well known in QED and QCD, are applied to the electroweak theoryin order to obtain
the higher-order terms through a resummation [5–9]. In this approach the evolution is split into two
regimes, where the electroweak interaction is described in terms of SU(2)×U(1) and Uem(1) sym-
metric gauge theories.1 This splitting is assumed to correctly reproduce all relevant implications of
electroweak symmetry breaking in LL, NLL and NNLL approximation. (ii) This assumption and
the resulting resummation prescriptions can be checked and improved by means of explicit dia-
grammatic two-loop calculations based on the (spontaneously broken) electroweak Lagrangian. So
far, all existing diagrammatic results are in agreement with the resummation prescriptions, however
up to now only a small subset of logarithms and processes has been computed explicitly. While
the LLs [11] and the angular-dependent subset of the NLLs [12] have been derived for arbitrary
processes, complete diagrammatic calculations at (or beyond) the NLL levelexist only for matrix
elements involving massless external fermions [13–15]. In the literature, noexplicit NLL calcula-
tion exists for reactions involving massive scattering particles.

In the following we present a recent two-loop NLL calculation [16] forn-fermion processes
f1 f2 → f3 . . . fn involving an arbitrary number of leptons and/or quarks. While all fermions with
mf ≪M are treated as massless, the top-quark mass effects are taken into account. For all invariants
r i j = (pi + p j)

2 we assume|r i j | ∼Q2 ≫M2, and the differences between the W, Z, H and t mass are
taken into account. Soft and collinear singularities from massless virtual photons are regularized
dimensionally and arise asε-poles inD = 4− 2ε dimensions. For consistency, the same power
counting is applied to ln(Q2/M2) and 1/ε singularities. Thus, in NLL approximation we include
all ε−k ln j−k(Q2/M2) terms with total powerj = 2,1 at one loop andj = 4,3 at two loops. The
photonic singularities are factorized in a gauge-invariant electromagnetic term. The remaining part
of the corrections – which is finite, gauge invariant, and does not dependon the scheme adopted to
regularize photonic singularities – contains only ln(Q2/M2) terms. The divergences contained in
the electromagnetic term cancel if real-photon emission is included.

1A new approach based on soft-collinear effective theory has been developed in Ref. [10].
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2. Extraction of soft, collinear and UV contributions from Feynman diagrams

Let us consider the two-loop diagrams that produce NLLs within the ’t Hooft–Feynman gauge.
These diagrams are obtained from the LL one-loop diagrams, i.e. diagrams with external-leg ex-
change of soft-collinear gauge bosons, via insertions of one-loop sub-diagrams that produce an
additional logarithm. We start with the diagrams that do not contain Yukawa interactions,

i

j

V1

V2

,

i

j

V1

V2

,

j

i

k

V2

V1

,

i

j

V1

V3
V2

,

i

j

V1

V2

. (2.1)

HereVi = A,Z,W±, and the external linesi, j,k = 1, . . . ,n are massless and/or massive fermions.
In the first four diagrams in (2.1) the gauge bosonV2 can couple to an external line or to an internal
propagator. In the latter case the only relevant region is the one whereV2 is collinear to an external
fermion and, using collinear Ward identities, we find that this type of contributions cancel [15,16].
The remaining diagrams contain a tree sub-diagram that corresponds to theoriginal process and
depends only on the external momenta.2 These diagrams are called factorizable, since their NLL
contribution factorizes into then-fermion tree amplitude times a two-loop NLL factor. For instance,
the factorizable diagrams associated with the fourth diagram in (2.1) are

i

j

V1

V3

V2F ,

j

i

V3

V1
V2F ,

k

i

j

V2
V1

V3

F . (2.2)

To extract the NLLs of soft/collinear origin, we exploit the fact that in the soft/collinear limit the
coupling of a gauge bosonV to the i-th external fermion yields a factor−2eIVi (pi + q)µ , where
q and pi are the gauge-boson and fermion momenta, whileIV

i is the gauge-group generator. For
instance, for the last diagram in (2.2) we obtain

µ4ε
D

∫ dDq1dDq2

(2π)2D

−8ie3g2εV̄1V̄2V̄3
[

gµ1µ2
(q1−q2)µ3

+perm.
]

l µ1
1

l µ2
2

l µ3
3

(q2
1−M2

V1
)(q2

2−M2
V2

)(q2
3−M2

V3
)(l2

1 −m2
1)(l

2
2 −m2

2)(l
2
3 −m2

3)
× IV1

i
IV2
k

IV3
j

M0,

whereq3 =−q1−q2, l1 = pi −q1, l2 = pk−q2 andl3 = p j −q3. Then-fermion tree amplitudeM0

must be regarded as a vector carrying SU(2) indices associated with the isospin of the scattering
fermions, and the generatorsIV

i act as SU(2) matrices on thei-th fermion.
In addition to soft/collinear contributions, there are also two-loop NLL terms that arise from

UV divergences in the one-loop sub-diagrams. In this case, the UV singularities are removed by
means of a minimal subtraction at the scaleµ2 = Q2. As a consequence, only those UV-divergent
sub-diagrams characterized by scales of orderM2 ≪ Q2 produce NLL terms. In particular, non-
factorizable diagrams do not produce NLL terms of UV origin. The explicit factorization of the
NLL contributions of UV origin is obtained by means of projector techniques [15, 16] since the

2In these tree sub-diagrams, which are denoted with an ’F’ in (2.2), the loop momenta must be set to zero. This
follows from the collinear Ward identities.
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soft-collinear approximation is not applicable in this case. After the abovementioned minimal UV
subtraction, we perform a finite renormalization that restores the on-shellnormalization of the wave
functions and translates the couplings to the minimal-subtraction scheme at the scaleµR.

For processes involving heavy quarks, in addition to the contributions listedabove also dia-
grams with Yukawa interactions contribute. Many of them are suppressed due to the behaviour of
the interactions of scalar fields in the soft/collinear andM → 0 limits. Only three types of diagrams
are not suppressed,

i

j

V

Φ

,

i

j

V

Φ

,

i

j

Φ′

V

Φ . (2.3)

Moreover it turns out that the sum of the NLL terms resulting from these diagrams cancels owing
to global gauge invariance of the Yukawa sector [16]. As a consequence, Yukawa interactions
contribute only through fermionic self-energy diagrams that appear in the renormalization of the
heavy-quark wave functions.

3. High-energy expansion of the loop integrals

The loop integrals have been calculated in theQ2≫M2 limit to NLL accuracy using the sector-
decomposition technique [17,18] and, alternatively, the method of expansion by regions [19–22].

3.1 Sector decomposition

Sector decomposition is based on the Feynman-parameter representation. Exploiting general
properties of soft, collinear and UV singularities, one can factorize thesesingularities in Feynman-
parameter space in such a way that the divergent integrations assume a standard form. If all parti-
cles are massless these singular integrals are trivial and produce simpleε-poles [17]. In presence
of massive particles, the general solution is available to NLL accuracy [18]. This permits to con-
struct, in a completely automatized way, finite integral representations for the coefficients of all
NLL terms of typeε−k ln j−k(Q2/M2). The integrands are smooth and can easily be integrated nu-
merically.3 Moreover, although these integrals do not have a standard form, it turnsout that they
are relatively simple. In practice they can be solved in analytic form by meansof standard tricks
(partial fractioning, integration by parts, etc.) combined with a table of elementary integrals. Also
this part of the calculation is highly automatized, however, the set of integration rules might need
to be extended when new diagrams are computed.

3.2 Expansion by regions

Within the expansion-by-regions method [19–22], the integration domain of the loop momenta
is divided into regions corresponding to the asymptotic limit considered. The integrand is appro-
priately expanded in every relevant region, and each of the expandedterms is integrated over the
whole integration domain. Each expanded term has a unique order in powers of Q andM, but the

3This holds only in the unphysical region where all invariantsr i j are negative, but allows for very useful checks.
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on-shell momentapi of massive fermions involve two scales,p2
i ∼ M2 and 2pi p j ∼ Q2. In order to

separate these scales, the massive momenta are reparametrized in terms of light-like momenta ˜pi, j

aspi = p̃i + p2
i /(2p̃i p̃ j)p̃ j . For the loop integrals needed in this calculation, the following regions

for each loop momentumk are relevant: hard, soft and ultrasoft regions, wherek2 is of the orderQ2,
M2 andM4/Q2, respectively; collinear, softcollinear and ultracollinear regions, wherek is collinear
to one of the external momenta andk2 is of the orderM2, M4/Q2 andM6/Q4, respectively. The
latter two regions contribute only if the external fermions are massive. The expanded loop integrals
have been evaluated using Mellin–Barnes representations, from which the extraction of NLLs has
been automatized. In addition, Mellin–Barnes representations of the unexpanded integrals have
been used to check the completeness of the set of regions used for the expansion.

4. Results and conclusions

The renormalized 2-loop NLL amplitude is expressed in terms of combinations ofSU(2) ma-
trices acting on the tree-level amplitude. This expression is simplified by means of SU(2) algebraic
identities and additional relations resulting from global gauge invariance. The final result is con-
sistent with the double-exponentiation formula4

M = exp





α
8π

n

∑
i, j=1
j 6=i

δ em
i j



exp





α
8π

n

∑
i, j=1
j 6=i

δ sew
i j







1+
α
8π

n

∑
i, j=1
j 6=i

δ Z
i j



M0. (4.1)

The termδ sew
i j behaves as if all electroweak gauge bosons would have the same massM and is

symmetric with respect to SU(2)×U(1) transformations,

δ sew
i j = − ∑

V=B,Wa

IV̄
i IV

j I(ε,M,−r i j )−
1

(4π)2

(

g2
1

YiYj

4
b(1)

1
+g2

2Ta
i Ta

j b(1)
2

)

J(ε,M,µ2
R). (4.2)

HereTa
i andYi are the generators of the SU(2)×U(1) group,g1,2 are the corresponding coupling

constants, andb(1)
1,2

the one-loopβ -function coefficients [15]. The NLL functions read

I(ε,M, r) = −L2−
2
3

L3ε −
1
4

L4ε2 +

[

3
2
− ln

(

r
Q2

)

−
yκi

i

Cew
i

g2
2m2

t

8e2M2
W

]

(

2L+L2ε +
1
3

L3ε2
)

(4.3)

andJ(ε,M,µ2
R) =

[

I(2ε,M,Q2)− (Q2/µ2
R)ε I(ε,M,Q2)

]

/ε with L = ln(Q2/M2). In (4.3)Cew
i =

∑V IV̄
i IV

i , and the Yukawa terms proportional tom2
t contribute with factorsyL

t,b = 1, yR
t = 2, yR

b = 0,
for heavy quarksi = b, t with chirality κi = R,L, and yκ

i = 0 otherwise. The termδ em
i j in (4.1)

depends on theγ–W mass gap and contains all soft/collinear singularities due to massless pho-
tons. These singularities involve single and doubleε-poles. Thus the termsδ sew

i j andδ Z
i j in (4.1)

need to be expanded up toO(ε2). We find thatδ em
i j behaves as in QED [16]. Finally we find that

all contributions depending on the Z–W mass difference can be factorizedinto the one-loop term
δ Z

i j =−IZ
i IZ

j ln
(

M2
Z/M2

W

)[

2L+2L2ε +L3ε2
]

. Apart from these latter ln(M2
Z/M2

W) terms, all effects
of symmetry breaking (terms proportional toMW/MZ, mixing parameters and vacuum expectation

4In the following we setµ2
D = Q2eγE/(4π).
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value) disappear due to non-trivial cancellations between different Feynman diagrams. These can-
cellations originate from relations between the gauge-boson masses, the mixing parameters, and
the vacuum expectation value. The result is in agreement with the resummation prescriptions pro-
posed for massless [6, 8] and massive fermions [7] and exhibits strict analogies with the general
form of two-loop singularities in massless QCD [23].
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