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1. Introduction

An accurate measurement of the W mass is of primary interest for precision tests of the Stan-
dard Model and for search of New-Physics effects through virtual-particle exchange. The total error
on MW could be lowered to 6 MeV by measuring the four-fermion production cross section near the
W -pair production threshold [1] at a future International Linear Collider (ILC), provided that the
theoretical uncertainties are well below 1%. This is a difficult task, requiring gauge-invariant inclu-
sion of finite-width effects and calculation of QCD and electroweak radiative corrections to the full
2→ 4 process. Previous NLO calculations in the double-pole approximation [2] were supposed to
break down near threshold for kinematical reasons. The recent computation of the complete NLO
corrections to e−e+→ 4 f in the complex-mass scheme [3] is valid both near threshold and in the
continuum, but is technically difficult, requiring the computation of one-loop six-point functions.

Here I present NLO results for the total cross section of the process

e−e+→ µ−ν̄µ ud̄X (1.1)

near the W -pair production threshold [4] computed with effective field theory (EFT) techniques
[5, 6, 7]. Section 2 reviews briefly the formalism, while the calculation of the Born cross section
and of radiative corrections is outlined in Sections 3 and 4. Section 5 presents numerical results
together with an estimate of the remaining theoretical uncertainties and a comparison with [3].

2. Unstable-particle effective field theory

The EFT approach [7] exploits the hierarchy of scales MΓ�M2 which characterizes processes
involving unstable particles, M and Γ being the mass and width of the intermediate resonance. The
degrees of freedom of the full theory are classified according to their scaling into short-distance
(k2 ∼M2) and long-distance (k2 .MΓ) modes. The fluctuations at the small scale (resonant par-
ticles, soft and Coulomb photons,...) represent the field content of the effective Lagrangian Leff.
“Hard” fluctuations with k2 ∼M2 are not part of the effective theory and are integrated out. Their
effect is included in Leff through short-distance matching coefficients, computed in standard fixed-
order perturbation theory. The systematic inclusion of finite-width effects is relevant for modes
with virtuality k2 .MΓ and is obtained through complex short-distance coefficients in Leff [7].

The specific process (1.1) is primarily mediated by production of a pair of resonant W s. The
total cross section is extracted from appropriate cuts of the forward-scattering amplitude [4], which
after integrating out the hard modes with k2 ∼M2

W reads [7]

iA = ∑
k,l

∫
d4x〈e−e+|T[iO(k)†

p (0) iO(l)
p (x)]|e−e+〉+∑

k
〈e−e+|iO(k)

4e (0)|e−e+〉. (2.1)

The operators O
(l)
p (O(k)†

p ) in the first term on the right-hand side of (2.1) produce (destroy) a pair
of non-relativistic resonant W bosons. The second term accounts for the remaining non-resonant
contributions. The computation of A is split into the determination of the matching coefficients
of the operators O

(l)
p , O

(k)
4e and the calculation of the matrix elements in (2.1). Both quantities

are computed as power series in the couplings α , αs, the ratio ΓW/MW and the non-relativistic
velocity of the intermediate resonant W pair v2 ≡ (

√
s− 2MW )/(2MW ), collectively referred to as

δ ∼ α2
s ∼ α ∼ ΓW/MW ∼ v2.
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The effective Lagrangian describing the non-relativistic W bosons up to NLO in δ is [6]

LNRQED = ∑
a=∓

[
Ω†i

a

(
iD0 +

~D2

2MW
− ∆

2

)
Ωi

a + Ω†i
a

(~D2−MW ∆)2

8M3
W

Ωi
a

]
. (2.2)

∆ is the matching coefficient ∆≡ (s̄−M2
W )/MW , where s̄ is the complex pole of the W propagator.

The field Ωi
± =
√

2MWW i
± describes the three physical polarizations of non-relativistic W s, and

the covariant derivative DµΩ± = (∂µ ∓ ieAµ)Ω± contains the interaction of the resonant fields
Ω± with soft and potential photons (see Section 4). To complete Leff one has to add to (2.2)
the effective production vertices O

(l)
p and the four-fermion operators O

(k)
4e with the corresponding

matching coefficients computed to the desired order in δ . These are presented in Sections 3 and 4.

3. EFT approximation to the Born cross section

The lowest-order production operator of two non-relativistic resonant W s is [6]

O
(0)
p =

παew

M2
W

(
ēc2,L(γ in j + γ jni)ec1,L

)(
Ω†i
−Ω† j

+

)
. (3.1)

Its matching coefficient is extracted from the on-shell process e−e+→W−W +, where “on-shell”
means k2 = s̄. The four-fermion operators O

(k)
4e do not contribute to A at this order, and the

forward-scattering amplitude is simply

iA (0) =

∫
d4x〈e−e+|T [iO(0)†

p (0)iO(0)
p (x)]|e−e+〉=

e

ee

Ω

e

Ω

O
(0)
p O

†(0)
p =− iπα2

s4
w

√

−E + iΓ(0)
W

MW
,

(3.2)
with E =

√
s−2MW and sw = sinθW . The total cross section for (1.1) is extracted from appropriate

cuts of (3.2). At lowest order this is correctly done by multiplying the imaginary part of A (0) with
the LO branching ratios of the decays W−→ µ−ν̄µ , W +→ ud̄, so that σ (0) = 1

27s ImA (0).
Beyond the leading term σ (0) there are contributions which can be identified with terms of the

expansion in δ of a full-theory Born result computed with a fixed-width prescription. The first class
of corrections arises from four-electron operators in (2.1). The imaginary part of their matching
coefficients are extracted from suitable cuts of hard two-loop SM diagrams [4]:

e

e

ν

W

W

fi

fj

ν

e

e

+

e

e

γ/Z

fi

fi
fj

W

W

ν

e

e

+

e

e

γ/Z

fi

fi
fj

W

W

γ/Z

e

e

+...⇒
e

e

e

e

Im[O
(1/2)
4e ] (3.3)

Compared to the LO cross section σ (0) ∼ α2
√

δ the new term is suppressed by α/
√

δ ∼
√

δ and
is denoted as “

√
NLO”. True NLO contributions to A (0) arise from higher-dimension production

operators and propagator corrections. The former come from the matching of the effective theory
on the on-shell process e−e+→W−W + at order v (O (1/2)

p ) and v2 (O(1)
p ) [6]. The latter correspond

to the term (~∂ 2−MW ∆)2/(8M3
W ) in (2.2). A comparison of the EFT Born approximations with the

full result computed with Whizard [8] shows a good convergence of the series [4]. However partial
inclusion of N3/2LO corrections is necessary to obtain an agreement of ∼ 0.1% at 170 GeV and
∼ 10% at 155 GeV [4].
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4. Radiative corrections

A complete NLO prediction must include radiative corrections to the Born result. These are
electroweak and QCD corrections to the matching coefficient of O

(0)
p and loop contributions to the

EFT matrix elements. At NLO the flavor-specific final state is selected by multiplying the total
cross section with NLO branching ratios. The O(α) correction to the matching coefficient of (3.1)
is obtained from the one-loop amplitude of e−e+→W−W +. Many of the 180 one-loop diagrams
do not contribute due to threshold kinematics and the result reads [4]:

C(1)
p =

α
2π

[(
− 1

ε2 −
3

2ε

)(
−4M2

W

µ2

)−ε

+ c(1,fin)
p

]
(4.1)

The one-loop corrections to the matrix elements arise from exchange of potential ((q0, |~q|) ∼
MW (δ ,

√
δ )) and soft ((q0, |~q|) ∼ MW (δ ,δ )) photons. Loops containing n potential photons are

enhanced by inverse powers of v, ∆A ∼ A (0)αnv−n ∼ A (0)αn/2, so that the first and second
Coulomb corrections must be included in a NLO calculation. Near threshold they amount respec-
tively to ∼ 5% and ∼ 0.2% of σ (0) [4].

Two-loop diagrams with soft photons connecting different hard subprocesses of (3.1) give the
so-called non-factorizable corrections. As a consequence of the residual gauge-invariance of Leff,
and in agreement with previous results [9], only the initial-initial state interferences survive:

e

e Ω

Ω e

e

+

e

e Ω

Ω e

e

=
4π2α2

s4
wM2

W

α
π

∫ ddr
(2π)d

1
η−η+

[(
1
ε2 +

5
12

π2
)(
−2η−

µ

)−2ε
]
, (4.2)

with η− = r0− |~r|2
2MW

+ i Γ(0)
W
2 and η+ = E− r0− |~r|2

2MW
+ i Γ(0)

W
2 .

5. Results and remaining theoretical uncertainties

Because of the approximation me = 0, the sum of the corrections calculated in Section 4 is not
infrared safe, containing uncanceled ε-poles. The result should be convoluted with MS electron
distribution functions after minimal subtraction of the pole. Since the distributions available in the
literature are computed in a different scheme, which assumes me as infrared regulator, it is more
convenient to convert our result from MS to this scheme. This is done by adding contributions from
the hard-collinear (k2 ∼m2

e) and soft-collinear (k2 ∼m2
e

ΓW
MW

) regions. These cancel the ε-poles, but
introduce large logs of 2MW/me [4]. The large logs are resummed by convoluting the NLO cross
section with the structure functions ΓLL

ee used in [2] after subtracting the double counting terms
[4]. Since only leading logs are resummed in ΓLL

ee, one can equivalently choose to convolute only
the Born cross section with the structure functions, as done for example in [3], the difference being
formally NLL. Fig. 1 shows the percentual correction to the Born result due to initial-state radiation
alone (solid black), full NLO corrections with ISR improvement of the Born cross-section only
(dot-dashed red), and complete NLO corrections with full ISR improvement (dashed blue). The
contribution of genuine electroweak and QCD corrections amounts to ∼ 8% at threshold. It must
also be noted that the difference between the two implementations of ISR is numerically important,
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reaching ∼ 2% at threshold. A comparison of the EFT approximation with [3] reveals a discrepancy
which is never larger than ∼ 0.6% in the range 161GeV<

√
s< 170GeV. More precisely we have

for the full calculation σ4f(161GeV) = 118.12(8) fb, σ4f(170GeV) = 401.8(2) fb [3], while in the
EFT one obtains σEFT(161GeV) = 117.38(4) fb, σEFT(170GeV) = 399.9(2) fb [4].
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�!!!!s @GeVD-28
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-24
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NLOHISR-treeLNLO
BornHISRL

Figure 1: Size of the relative NLO correc-
tions for different implementations of ISR

The dominant remaining theoretical uncertainty
comes from an incomplete NLL treatment of ISR. This
translates into an uncertainty on the W mass of ∼
31MeV [4]. Further uncertainties come from N3/2LO
corrections in the EFT. The missing O(α) corrections
to the four-electron operator (3.3), which are included
in [3], contributes an estimated uncertainty of∼ 8MeV
[4], while interference of potential and soft photon
exchange accounts for additional ∼ 5MeV [4]. This
means that with a NLL treatment of initial-state radi-
ation, which seems realistically achievable in the near
future, and further inputs from [3] the total theoretical
error on MW could be reduced to the level required for phenomenological applications at linear
colliders.
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