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1. Introduction

We study the infrared (IR) singularities of some massive one-Bppint Feynman integrals,

| = efE / di% T(k) (1.1)
in9/2.) (o —mj)v...(of —nF)Vi... (GG —mg)*n’ '
by representing them with standard Feynman parameter integrals with temestacF and U

forms:
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with Ny = S, vi. For one loop integrals, tHé = S x; may be set to one. THe-form is bilinear
in the x; and may be represented in turn by a multiple Mellin-Barnes (MB) integral, ubiag
representation:

joo+-R
1 vz F(=2)F(v+2)
W 2711_|/+R dz AX)*B(x)" W’ (1.3)

where the integration contour separates the poles df-thections.

Afterwards, the Feynman parameters may be integrated out and one basetthe resulting
MB integral. This is in general quite non-trivial. However, there is an istiémg kind of problems
where a systematic approach might be developed, namely the evaluationRfdiwergent parts
of the Feynman integrals. They are at the begin oftlexpansion£ = (4—d)/2) of the Feynman
integral and so of smaller dimensionality in the varialzes fact, usually one subtracts them from
the rest of the integral and treats them separately.

The MB representation allows to do this in a special way which might be of soawtigal
usefulness. We will discuss here only scalar one-loop functibflg,= 1, but tensors don’t show
additional problems. For basic definitions and formulae we refef]td][1 A8]raferences cited
therein. We use here and in the following the Mathematica packages AMEBR&h§LMB [4]
for the derivations of the MB representations and forgkexpansions. In section 2 we apply the
MB-approach to the massive Bhabha vertex and box functions anaetktedr e-poles. Section 3
contains the treatment of both the virtgapoles and the endpoint singularities from an unresolved,
massless particles in a pentagon diagram of massive Bhabha scatterngnefitod may be gen-
eralized to more complex cases, including higher loop orders, but expladitaions become then
more and more complicated.

2. Simple g-poles. Massive QED vertex and box

We will setm= 1, ands, t are the usual Mandelstam variables. The QED vertex function has
the F-form:

F(s) = [X[2 +X[3])*+ -5 X[2]X[3], (2.1)
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leading, without a continuation ia, to a one-dimensional MB representation and a series over
residues([P]:

—i0—1/2
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The complete series may be summed directly with Mathematical the vertex becomes:
£
V(s) = ——-T(1+¢) 2F1[1,1+£;3/2;5/4]. (2.3)

2¢€

Alternatively, one may derive theeexpansion by exploiting the well-known relation with harmonic
numbers§(n) =y, 1/ik:

M(n+ae)
r(n)
The product expeye ) (1+¢€) = 1+ 1{[2]e2 + O(£?) yields expressions with zeta numbéis),

and, taking all terms together, one gets a collection of inverse binomiaPstmadirst of them is
the IR divergent part:

(—ae)
k

=T (1+ag)exp [— S(n—-1)]. (2.4)

k=1

V(s) = V:(S)

+Vo(s) + - (2.5)
12 g 14arcsir{/s/2)
V_1 S) = — = — .
® Zn; (M(2n+1) 2 VA-s/s
This procedure applies similarly to the Bhabha box diagifgm [7]. We takeefimiteness the
schannel scalar loop integral. Tikeform is (again withm = 1):

(2.6)

F(s,t) = [X[2] + X[4])% + [ X[1]X[3] + [t] X[2]X[4], (2.7

and an MB representation is, after continuation to small sum of two terms:
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1The expression fov (s) was also derived irﬂs]; see additionalﬂ [6].
2For the first four terms of the-expansion in terms of inverse binomial sums or of polylogarithmic funstisee

]
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Due to the pre-factors,[—¢)2/I [—2¢] = —2/& + 2 [2]e +O(?) and YT [—2¢] = —2& + 4ye? +
O(&3), only the first integral contributes to the first two terms of thexpansion,

71 va
Blst) = [s—ln(—s)] 9

whereV_1 is from (2.6), and the IR divergency is:

B a(st) — V(‘_lg).

We reproduce here the well-known fact that IR-divergences dicesrand boxes are algebraically
related, see e.g[][3].

+)(¢&), (2.9)

(2.10)

3. Mixed virtual and real | R-singularities: massive Bhabha pentagon

Things become more interesting for pentagon diagrams (sd hi$d[3, 8e3jyain use Bhabha
scattering as an example. A compkeform is:

F(St,t',Vo,Va) = (Xo+Xa+X6)% + [—SXaXa + [~ Va]XaXs + [—t]X2Xq + [—t']XaX5 + [~ Vo] XaXa.
(3.1)

It exhibits a set of five invariants (out of a set of 10 scalar productshaice) describing the
kinematics of a 2— 3 process (here assuming a final state emission of an unresolved plaston f
an s channel box diagram). Thgt,t’ are the usual Mandelstam variables for the fermions in
e'e” —efe y, and:

Vi=2pip,, i=1,...4 (3.2)

TheV; are proportional to the energy of the potentially unresolved masslesdqartic

From a subsequent phase space integration, we have to expectieinsipgularities arising
from terms proportional td/V> ~ 1/E, and1/V4 ~ 1/E, so we have to control, for a complete
treatment of the IR-problem, not only theexpansion, but also the first terms of theW; expan-
sions for small Y, V.

In fact, theF-form (8.1), written here in its shortest form, depends on those two obilma/f
which are related to the phase space of the given topology.

The MB-representation is a useful tool for that problem. For the IR limit, wg apgroximate
t’ =t, and the scalar pentagon may be written as:

ek 4 oo I:l rj
I = — / d —S 4] _t 4 _V Z3 _V —3—E-2-2—273—24 ’
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(3.3)

with u; = (-5/8,—7/8,...) and with a normalizatiofiy = '|—1 — 2¢], and the otheF -functions
are:

M =T[-a), Te=T[-2|, M3=T[-z|, F4=T[1+2z],
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s =Tl+z+z], Te=T[~z], T7=T[1+z], Ng=T[-1-e-2—12)],
fo=Tl[-2-¢-n--7a—2z], To=l-2-c—-2z1—23—2),
M1=T[—e+2z—2+2), T12=T[3+e+21+2+ 2+, (3.4)

and, in the denominator:
M3 = r[—l—S—Zl—Zz—Z4], M4= r[—8—21—22—1—24]. (35)

Leaving out here the details of derivation (sge [3] for that), we just mettiat we have to consider,
after continuation irg, eleven MB-integrals, being at most 4-dimensional {fet t). The resulting
IR-sensible part is:

15 = 15%(V2) +15%(Va), (3.6)
B = 22 g, 37)

The g-pole is again proportional to that of the vertex:

15,M) 1 2 (t)" _Va()
15 B Zs\/.sn; on ~ sVe (38)
(n) (2n+1)
and:
s 1 < ®"
150) = [—2In(—\Vi) — 38 () + 28,2+ 1)), (3.9)

e <2n”> (2n+1)

where we have to understand+V;) = In(V;/s) + In[—(s+i8)/m?]. The series fot§(Vi) may be
summed up in terms of polylogarithmic functions with the aid of Table 1 of Appendit [0],
see also[]3].

Equations[(3J6) -{(3]9) are the main physical result of the study. Oneerpagss the complete
IR-divergent part of an amplitude with 5-point functions in terms of thoggessions, subtract
it from the complete, divergent amplitude and get a matrix element, which grable in four
dimensions.

In the rest of this short write-up we would like to demonstrate why we have besides
the harmonic number§;(n) also those of the kin&;(2n+1). As mentioned, the scalar 5-point
function may be written as a sum of eleven MB-integrals afteontinuation, before-expansion.
Two types of them contribute to the IR-part (there are four such intefijradm ad-hoc notations
J3, da, J7, Jg], but with a symmetry, < V,). The first one is:

2 +io—5/8 B B B
el | R
—i0—5/8
2¢e _
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2¢€ 0
= _meﬂﬁ r[_zg]r[1+ 28] z »[nflr
SV4 n=1

[€+n|l[2€ 4 n]
I[2e+2n|

(3.10)

The J; is proportional to V4. We have a second integral of the same type, being proportional to
1/V2:

J = (Vg —Vo). (3.11)
The other type of integrald;, Jg, with:
I = Jo(Va > Vo), (3.12)

are two-fold MB-integrals:

r—2 ¥ +i0o—5/8  +i—7/8
Jo = r[_[]_ —82]3] (27)° / dz / dzo(—)2(—t)Eat2(_\y) 12 2(y,) 22
—i0-5/8  —i0—7/8
x M=z|lA[-1-2|l[-26 -l [-1-¢ -z - 2|lc[-¢+7z - 2|l [-2)]
F2+2)] Me[l+2e+2)] Ml+&—2z+2)
M—2z] M~1-2¢—27)

. (3.13)

The integral looks like being, in the limi{; — O, too singular. This limit is an endpoint of the
phase space integration. Let us close the contour to the lefshiifanow the integration contour
in z, to the left, raising in this way the (real part of the) power(el,) to a value which makes
the photon phase space integral explicitely integrablg at 0 in d = 3— 2¢ space dimensions. If
singularities of the integrand (froim-functions) at some values = zr are crossed one has to add
the corresponding residuég(zR), so getting one-dimensional MB-integrals to be considered:

Jo =27y I(ze) + 3" (3.14)
7R

The resulting integra.llgs)hift differs from Jg only by the shifted integration path, but will now not
contribute to the IR-singular part and will not be considered here ang.nWe see that only the
residues of crossed singular pointszincontain the IR-relevant endpoint singularities\is V,.
Here, two of them (at, = —1 [argument of 4 in (8.13)] and atz, = —1 — 2¢ [argument of gin
(B.13)]) contribute due to a shift fromiz, = —7/8 to 0z, = —7/8— 1 = —15/8. The first of them
is:

(—Vo) % I'[~2¢]T g[2¢] €%

ey F[—1—2¢] 2m
e r[—2¢ —2)r[—¢ —zJr [-2rcl1+2)
“1gl €Al [—e—z|l |-zl cll+2
g . /5/8 a0 M[—1-2¢|l[-2e—22)]
(V)% /T [—2€]°T g[2¢]
= egyEr[—l—zg]r[s/z—s] JFi[1,1-2¢,3/2—¢€,t/4.  (3.15)

We performed here an irrelevant steft— z + € in order to make the argument B¢ independent
of €. This will be here the only -function producing residues i3 when closing again the contour
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to the left. The explicie-expansion of the hypergeometric function[in (B.15) may be obtained with

the Mathematica package HypEx[ﬂl, 5]. Alternatively, we may perthiensum of residues

arising fromlrc(1+z) directly:

(—\Vp) 2% e F[—2elr2e] & , 1F[-2e+n[—&+n]
sV, MN—1-2¢] n; r—-2e+2n

and apply then[(214) to it. It is here where we may see why the harmonic nsiBtén + 1)
appear, which were not contributing to the vertex or the box: There wdsfanction with an
e-shifted, doubled argument in the denominator of the final sums, while hisragpears. In the
general massive case, this will usually happen.

The second residue crossed by the contour shifting inzsh@dane gives the third kind of
contribution to be added; after a shift— z; — €:

Jop = — (3.16)

(Va/s)* e 1y
Jop = oL 26| [2e]ra2e] S / dz(~t)
—i0—5/8
Me—all[2e —z|l[—zi]lc[1+ 7]
M[—1—2¢|lN[2e — 2z]
(V“/ S) NVa/S o p iy L 26T [-26IT 2" Ly g o 30 p 1)

22€F[ 1—2¢|l[3/2+¢]
_ (V4/s) e M[1—2¢el[—2¢]l[2¢] & tn_ll'[£+ |l [2e 4 n|
sV M—1-—2¢] & [[2e+2n]
Again, this may be expanded into arseries over inverse binomial sums by use[of| (2.4).
Collecting everything together, we rediscover|3.6) (plus additional tefme celevance for
the IR-treatment):

(3.17)

B+a+ g+ I7+Joa+Jog = [Iil(V2)+|il(V4):| +|8(V2)—|—|8(V4)—|—--- (3.18)

™| =

4. Conclusions

We gave a pedagogical introduction to the treatment of mixed real and ViRtsahgularities.
This kind of problems arises in NNLO problems, where one has to treat tleselwed mass-
less particle phase space for loop integrals. The presented method evaglified for a scalar
integral, but it may be easily applied to general tensor functions. For tHe Qatagon, this
is discussed in[[3], which may be considered as an introduction to thisrpatise. A deriva-
tion of MB-representations for higherpoint functions or for multi-loop integrals is more or less
straightforward, although aanalytical evaluationwill become more and more troublesome. It
is an interesting open question how useful the MB techniques might appesedlistic, so far
unsolved applications.
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