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Measurements of new physics at the forthcoming experimental program at CERN’s Large
Hadron Collider (LHC) will require a precise understandingof processes at next-to-leading order
(NLO). This places increased demands for the computation ofnew one-loop amplitudes. This in
turn has spurred recent developments towards improved calculational techniques.

Direct calculations using Feynman diagrams are in general inefficient. Developments of more
efficient techniques have usually centred around unitaritytechniques [1], where tree amplitudes are
effectively “glued” together to form loops. The most straightforward application of this method, in
which the cut loop momentum is inD = 4, allows for the computation of “cut-constructible” terms
only, i.e. (poly)logarithmic containing terms and any related constants. QCD amplitudes contain,
in addition to such terms, rational pieces which cannot be derived using such cuts. These “missing”
rational parts can be extracted using cut loop momenta inD = 4−2ε [2]. The greater difficulty of
such calculations has restricted the application of this approach, although recent developments [3,
4] have provided new promise for this technique.

Recently the application of on-shell recursion relations [5] to obtaining the “missing” rational
parts of one-loop processes [6] has provided an alternativevery promising solution to this prob-
lem. In combination with unitarity methods an “on-shell bootstrap” approach provides an efficient
technique for computing complete one-loop QCD amplitudes [7]. Additionally other new methods
have also proved fruitful for calculating rational terms [8].

Such developments have again refocused attention on the optimisation of the derivation of
the cut-constructable pieces of the amplitude. Deriving cut-constructible terms for any one-loop
amplitude reduces to the computation of coefficients of a setof scalar bubble, scalar triangle and
scalar box integral functions. Box coefficients may be foundwith very little work, directly from
the quadruple cut of the relevant box function [9]. A unique box coefficient contributes to each
distinct quadruple cut. Unfortunately triangle and bubblecoefficients cannot be derived in quite so
direct a manner. Multiple scalar integral coefficients appear inside a two-particle cut or triple cut.
It is therefore necessary to disentangle the relevant bubble or triangle coefficients from any other
coefficients sharing the same cut [1, 4, 10, 11]. The large number of NLO processes of interest for
the LHC suggests that a completely automated computationalprocedure is highly desired. To this
end we discuss, in this proceeding, a recently proposed method [12, 13] for the direct, efficient and
systematic extraction of bubble and triangle coefficients which is well suited to automation.

1. Triangle coefficients

Following in the spirit of the box coefficient [9] we would like to apply a triple cut to extract
a triangle coefficient. Such a triple cut isolates a unique triangle coefficient but also contains
contributions from scalar box integrals which share three of their four propagators with the triangle.
The separation of the coefficient of a particular scalar triangle integral from any box coefficients
can be effected by

c0 = − [InftA1A2A3] (t)
∣

∣

∣

t=0
. (1.1)

Equation 1.1 instructs us to start by taking the triple cut ofthe desired triangle coefficient,

Atree
1 Atree

2 Atree
3 (t) = Atree

c3−c1+2(−l ,c1, . . . ,(c3−1), l1)A
tree
c2−c3+2(−l1,c3, . . . ,(c2−1), l2)

×Atree
n−c2+c1+2(−l2,c2, . . . ,(c1−1), l), (1.2)
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shown in figure 1(a), withl1 = l −K1 and l2 = l + K2, whereK1 andK2 are sums of external mo-

a)

K1

l

l1 = l − K1

l2 = l − K2

−K2

K3

c1

c3 − 1

c3

c2 − 1

c2
c1 − 1

b) K1

l

l1 = l − K1

c1 + 1

c2
c2 + 1

c1

Figure 1: a) The triple cut used to compute a scalar triangle coefficient. b) The two-particle cut used to
calculate a scalar bubble coefficient.

menta. The cut momentuml of the triple cut depends on a single parametert, and is parameterised
in the specific form [11, 12],

〈l−| = t〈K♭,−
1 |+ S1 (γ −S2)

(γ2−S1S2)
〈K♭,−

2 |, 〈l+| = S2 (γ −S1)

(γ2−S1S2) t
〈K♭,+

1 |+ 〈K♭,+
2 |. (1.3)

Here we have expressed the cut momentum in terms of a convenient basis of null vectorsK♭
1 and

K♭
2

K♭,µ
1 =

Kµ
1 − (S1/γ)Kµ

2

1− (S1S2/γ2)
, K♭,µ

2 =
Kµ

2 − (S2/γ)Kµ
1

1− (S1S2/γ2)
, (1.4)

with two solutions forγ = (K1 ·K2)±
√

∆ with ∆ = (K1 ·K2)
2−K2

1K2
2.

The Inft is instructing us to series expand this cut integrand aroundt = ∞. Thet0 component
of this series expansion gives the desired triangle coefficient. For the three-mass case described
above we must also average over the two solutions toγ . Analytic continuation ofl to complex
momenta allows one- and two-mass triangles, containing three-point vertices, to be computed in a
similar manner after setting the relevant masses in eq. (1.3) and eq. (1.4) to zero. In these cases
only one solution toγ survives.

This procedure succeeds because of the specific momentum parametrisation we have chosen.
The series expansion of the Inft would in general give us rational coefficientsai multiplying inte-
grals over powers oft. Seen schematically this is

−1

∑
i=−∞

ai

∫

dt ti +a0

∫

dt+a1

∫

dt t+ . . .+amax

∫

dt tmax, (1.5)

and we would expect contributions to the scalar triangle coefficient from every term. It is easy to
show though that all integrals overt will vanish, eliminating any such contributions. For example,

∫

dtt ∼
∫

d4l
〈K♭,−

2 |/l |K♭,−
1 〉

l2l2
1l2

2

∼ 〈K♭,−
2 | /K1|K♭,−

1 〉C1 + 〈K♭,−
2 | /K2|K♭,−

1 〉C2 = 0, (1.6)

with a similar result for other non-zero powers oft. TheCi are Passarino-Veltman reduction coef-
ficients.
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2. Bubble coefficients

A similar procedure applies to the extraction of bubble coefficients. To compute the coefficient
of a particular bubble we use a two-particle cut and must disentangle our desired coefficient from
the scalar boxes and triangles which this will also contain.We start from the generic two-particle
cutAtree

1 Atree
2 (t,y) = Atree

c2−c1+2(−l ,(c1 +1), . . . ,c2, l1) Atree
c1−c2+2(−l1,(c2 +1), . . . ,c1, l) shown in fig-

ure 1(b), withl1 = l −K1. Having isolated a single bubble coefficient we parameterise the cut loop
momentuml , which now depends upon two free parameterst andy, using

〈l−| = t〈K♭,−
1 |+ S1

γ
(1−y) 〈χ−|, 〈l+| = y

t
〈K♭,+

1 |+ 〈χ+|. (2.1)

This is expressed in terms of a basis of massless on-shell momentaK♭
1 and χ . χ is an arbitrary

free vector, which the final result is independent of, used todefineK♭,µ
1 = Kµ

1 − (S1/γ)χ µ with
γ = 〈χ±| /K1|χ±〉 ≡ 〈χ±| /K♭

1|χ±〉.
The equivalent expression to eq. (1.1) is then given by

b0=−i [Inft [InfyA1A2] (y)] (t)
∣

∣

∣

t→0, ym→ 1
m+1

− 1
2 ∑

Ctri

[InftA1A2A3] (t)
∣

∣

∣

tm→T(m)
. (2.2)

The first term is the natural extension of the single Inft of eq. (1.1) to the case of two free parame-
ters. In this double series expansion we expand aroundy = ∞ and thent = ∞ and again drop terms
proportional tot, because the corresponding integrals disappear. Integrals overy are non-vanishing
though and are related to the scalar bubble integral,B0(K2

1), via
∫

dyym = B0(K2
1)/(m+1).

The naively unexpected second term of eq. (2.2) involves a sum over all the trianglesCtri that
contain the original two-particle cut. Writing the two-particle cut integrand schematically in the
form

a0(t)+a1(t)y+ . . .+amax(t)y
max+∑

Ctri

AL(yi(t), t)AR(yi(t), t)
ξi (y−yi(t))

, (2.3)

allows us to understand why contributions from triangles arise. Solving(l(y, t)−K2)
2 = 0, the

additional propagator present in the triangles in the last term above, gives usyi(t). Inserting this
solution into the momentum parameterisation ofl given by eq. (2.1) leaves us with the momentum
parametrisation of the triangles that we wish to separate from the bubble. This parametrisation
differs importantly from eq. (1.3) in that the integrals over t do not vanish, as can be seen for
example with

∫

dtt ∼
∫

d4l
〈χ−|/l |K♭,−

1 〉
l2l2

1l2
2

∼ 〈χ−| /K1|K♭,−
1 〉C1 + 〈χ−| /K2|K♭,−

1 〉C2 6= 0. (2.4)

The remaining contributions to the bubble coefficient are then found by relating these non-vanishing
integrals overt to scalar bubbles using

T(m) =

(

S1

γ

)m 〈χ−| /K2|K♭,−
1 〉m(K1 ·K2)

m−1

∆m

(

m

∑
l=1

Cml
Sl−1

2

(K1 ·K2)l−1

)

Bcut
0 (K2

1), (2.5)

andT(0) = 0. The coefficientsCml are given by

C11 =
1
2
, C21 = −3

8
, C22 = −3

8
, C31 = − 1

12
∆

(K1 ·K2)2 +
5
16

, C32 =
5
8
, C33 =

5
16

.
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