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1. Generalised Unitarity

The recent boost in the development of thecniques for evaluating scattering amplitudes is
certainly due to the better understanding of their analytic properties. By relaxing the condition of
working with real Minkowski kinematics, and using, instead, complex momenta for either external
or propagating particles, off-shell degrees of freedom are reparametrized within complex, yet on-
shell quantities. On-shell methods make use of complex kinematics for exploiting the singularities
of on-shell amplitudes and the factorization information to reconstruct amplitudes iteratively from
their poles at the tree-level [1], and from their branch-cuts at higher order [2] - since the singularities
of scattering amplitude are determined by lower-point amplitudes in the case of poles, and by lower-
loop ones in the case of cuts [3, 4, 5]. On-shell methods were originally used in [6] and in the more
recent systematized implementations for the completion of all six-gluon helicity amplitudes (see
[8] for a complete list of refs.) and the calculation of the six-photon amplitudes [14, 15].

In this talk I discuss a possible implementation of generalised unitarity as on-shell method for
computing one-loop amplitudes analitically. I recall the techniques of the quadruple-cuts and the
of the double-cuts with spinor integration, mainly focusing on its extension to compute triple-cuts.

At one loop, generalized unitarity corresponds to requiring more than two internal particles to
be on-shell, as realized, in general, only with complex momenta. The application of unitarity as
an on-shell method of calculation [7], is based on the principles that: i) by means of Passarino-
Veltman reduction, any one-loop amplitude is expected to be expressed as a linear combination of
scalar (i.e. with trivial numerator) master integrals (MI); ii) any MI is identified by the number
of its external legs, and characterized by its own set of (leading and subleading) singularities; iii)
products of on-shell tree-level amplitudes produce one-loop functions with the proper branch cuts.
Provided the knowledge of the MI (that can be apriori evaluated), to compute any amplitude it is
sufficient the evaluation of the coefficients of its decomposition in terms of MI. The principle of
a unitarity-based method is the extraction of the rational coefficients from the decomposition, by
matching the multiparticle cuts of an amplitude onto the corresponding cuts of the MI.

2. Multiparticle-Cuts in 4- and D-dimensions

Any one-loop amplitude in four dimension can be expressed in terms of poly-logarithms and
rational funtions associated to a combination of 2-, 3-, and 4-point functions (the occurrence of 0-
point functions is not discussed here), see Fig.1. The use of 4-dimensional states and momenta in
the cuts enable the construction of the poly-logarithmic terms (plus trascendental constants) of the
amplitudes, which are fixed by their branch-cuts, and are called cut-constructible; but generically
drops the rational terms that have to be recovered independently.
Recent improvements to the unitarity method use complex momenta within generalized unitarity.
The most effective application of such an idea is represented by the quadruple-cut, shown in Fig.2
(line-one). Quadruple-cuts allow for a simple and purely algebraic determination of the coeffi-
cients of box-functions, because the four cut-conditions freeze completely the 4-dimensional loop
integration. Accordingly, every box-coefficient is simply determined by the product of the four
tree-level amplitude sitting at each corner, read at the values of the loop momentum which fulfill
the equations imposed by the vanishing of the cut denominators [9].

2



P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
1
8

Multiparticle Cuts Pierpaolo Mastrolia

= c4 + c3 + c2

Figure 1: Decomposition of any one-loop amplitude in terms of basic scalar integrals.

Using triple- and double-cuts, respectively shown in Fig.2 (line-two) and (line-three), has led to
very efficient techniques for extracting triangle and bubble integral coefficients analytically [10,
11, 12, 13]. In fact, while in the case of the quadruple-cut the conditions imposed by the vanishing
of four denominators bind completely the loop momentum, in case where less than four denomi-
nators are cut, the loop momentum can still run, and the explicit integration over the phase-space
is required. In particular in [10, 11], the double- and triple-cut phase-space integration has been
reduced to the extraction of residues in spinor variables and residues in Feynman-parameters.

The 4-dimensional version of the unitarity method leaves, as said, the pure rational term in
the amplitudes undetermined. The so called unitarity bootstrapp method [16] can reconstruct
the rational term recursively, due to the interplay of 4-dimensional unitarity and on-shell recur-
rence relations. Alternatiely, full one-loop amplitudes can be constructed from unitarity cuts in
D = 4− 2! dimensions [17], since in the D-dimensional unitarity method, what is intended as
“rational” (after expanding around ! = 0), appears as !-dependent terms in the coefficients of the
MI (before expanding around ! = 0). A systematic D-dimensional unitarity double-cut method
was proposed in [18], reducing one-loop amplitudes to MI for arbitrary values of the dimension
parameter. Accordingly, the double-cut phase-space in D dimensions is written as a convolution of
a 4-dimensional double-cut with an additional mass present in all propagators, and an integration
over such mass parameter [20]. Only the 4-dimensional integration is explicitly required, and it
can be performed by 4-dimensional unitarity techniques [10]. The remaining integral over the ex-
tra parameter, which gives rise to the !-dependence of the cut-amplitude, is mapped to phase-space
integrals in shifted dimensions. It is important to remark that because of the splitting of the loop
variable in a 4-dimensional component and a (−2!)-complement, the singularities structure (poles
and branch-cuts) of a loop integral is exposed after the 4-dimensional integration.

Given the decomposition of any amplitude in terms of MI, the coefficient of any n-point MI
can be recovered from the n-particle cut. Obviously, any n-particle cut may detect as well cuts of
higher-point MI, which will anyhow appear with different analytic structures for they come from
the Landau poles specific to each of the basic scalar integrals. The coefficient of a given n-point
MI appears in the non-logarithmic term of the corresponding n-particle cut, being either a rational
or an irrational function. The logarithmic term of a n-particle cut can be associated to a function
with number of points larger than n: usually logarithms are generated by integrating over variables
which are not frozen by the cut-conditions. The non-logarithmic term of a n-particle cut can as
well contain a n+1-point MI: such a situation does happen when the n+1-point MI degenerates,
namely has the same number of independent scales of a n-point MI.

2.1 Triple-Cut

In this talk, I show a new way for computing triple-cuts of one-loop amplitudes. It enables the
direct extraction of triangle- and higher-point-function coefficients from any one-loop amplitude
in arbitrary dimensions. It extends the benefits of the double-cut integration of [10, 18], through
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= c4

= c4 + c3

= c4 + c3 + c2

Figure 2: Multiple-cuts of a generic one-loop amplitude expressed in terms of the corresponding cuts of the
scalar master integrals: quadruple-cut (line-one), triple-cut (line-two), double-cut (line-three).

the idea of the inverse Cutkosky rule [19] for replacing one of the three on-shell " -function by the
difference of two propagators,

" (p2−µ2) =
1

(2#i)

{
1

p2−µ2+ i0
− 1
p2−µ2− i0

}
. .

As a consequence, the triple-cut is treated as a difference of two double-cuts with the same particle
contents, and a same propagator carrying respectively causal and anti-causal prescription in each
of the two cuts, as shown in Fig.3. The triple-cut phase-space in D dimensions is written as a

AL(K1)

AM (K2)

AR(K3)p

p−K

p+K3 =
1

(2#i)

{

+i0
−

−i0

}

Figure 3: Triple-cut in terms of two double-cuts, respectively with a causal propagator and an anti-causal
propagator: AL,AM, and AR are tree level amplitudes, respectively depending on the external momenta
K1,K2,K3.

convolution of a 4-dimensional triple-cut with an additional mass present in all propagators, and an
integration over such mass parameter, which plays the role of a (−2!)-dimensional scale. As for
the double-cut [18], to perform the 4-dimensional integration, one combines the method of spinor
integration via the holomorphic anomaly of massive phase-space integrals with an integration over
the Feynman parameter. But, in the case of the triple-cut, after Feynman parametrisation and after
reading the residues in spinor variables, by combining back the two double-cuts (carrying opposite
i0-prescription), the parametric integration is reduced to the extraction of residues in the Feynman
parameter, due to relations like

1
(ax2+bx+ c)+ i0

− 1
(ax2+bx+ c)− i0

=
2#i

a |x1− x2|

(
" (x− x1)+" (x− x2)

)
,

where x1,2 are the zeroes of the corresponding quadratic denominator. These roots do carry the
analytic information that characterizes each MI by determining its own generalised cuts [21]. The
final integration over the dimensional scale parameter is mapped, as for the double-cut, directly to
triple-cut of master integrals with shifted dimensions.
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Figure 4: Independent multiple-cuts of the six-photon amplitudes.

3. Conclusions

The multiple-cut techniques outlined above have been applied already in several contexts. In
particular, the double-cuts based on spinor-integration [10] had been succesfully used to compute
analytically the less trivial contributions to the cut-constructible part of the six-gluon amplitude.
Recently, quadruple-cuts [9] and triple-cuts [11] were employed for the calculation of the complete
six-photon amplitudes [15], whose cut-constructibility, namely the absence of rational ambiguities,
was shown in [14]. The absence of rational term in double-cuts indicated the vanishing of 2-points
coefficients, therefore the six-photon amplitude could be expressed in terms of box- and triangle-
function associated to the six cut-diagrams shown in Fig.4 (plus permutations). Our analytic results,
in agreement with the numerical counterpart [22], was also confirmed by [12]. Double-cuts [10]
have been used for the computation of the one-loop MHV amplitude involving a Higgs and an arbi-
trary number of gluons (two carrying negative helicity, and the rest, positive one) in the heavy-top
limit [23]. On-shell methods for tree- and loop-amplitudes, within the spinor-helicity formlism,
have been implemented in the Mathematica package S@M [24], which has been used in [15, 23].
Unitarity based methods for one-loop amplitudes have been under an intense development1. By
now, we dispose of further refined techniques for evaluating the coefficients of the decomposition
in terms of MI for generic amplitudes, which minimize the computational load to purely algebraic
operations [25, 12]. They have the potentiality for rendering the evaluation of high-multiplicity
one-loop scattering amplitudes completely automatizable, and their numerical implementation has
been receiving much attention [26].
In this talk I have discussed one possible analytic implementation of the multiple-cuts, based on
the combination of spinor-integration and Feynman parametric integration, in particular focusing
on the triple-cut. As it turned out, in the evaluation of any triple-cut, while the spinor integration
is carried on by Cauchy’s residues theorem, the parametric integration is trivialised by the extra
cut-condition. This last feature suggests the applicability of cut-constraints directly in the repre-
sentation of an amplitude as multiple integral in Feynman parameters, which can be as well applied
beyond one-loop.
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