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1. Introduction

At the LHC the observation of hard processes with many jetsgg bosons and perhaps heavy
new particles and their subsequent theoretical interfipetés of primary importance. The quanti-
tative analysis of these processes requires the knowlefdipe aorresponding cross-sections and
correlations at next-to-leading order (NLO) accuracy inymbative QCD. The standard method
of calculation based on Feynman diagrams becomes very eaorbe for multi-leg processes. In
gauge theories the conventional Feynman diagram methadipes intermediate results which are
much more complicated then the final answer. The number afifRagp graphs grows very fast
with the number of external legs. For a tree-leiefluon scattering the number of individual
Feynman graphs is approximatedfN—3) (within 5% accuracy up to 16 gluons) [1]. This decom-
position generates a large number of terms. With a growimgbar of external particles it becomes
a forbidding task to simplify the resultant expression gtiedlly. Recently more numerical tech-
nigues have been developed (see e.g. ref. [2]). Howeveaukseof the stronger than exponential
growth in the number of Feynman diagrams these brute-forethads become computationally
very intensive for amplitudes with six or more legs.

Unitarity methods have been suggested as an alternativies eficient procedure for loop
calculations a long time ago [3, 4, 5]. Their use in the cantéxgauge theories is especially ben-
eficial [6, 7]. The computing time is governed by the efficient computing tree amplitudes and
by the number of cuts. In these applications, the unitantyis four dimensional. This allows
the use of helicity method and surprisingly simple analgiiswers [8] have been derived. The
four-dimensional unitarity method reconstructs only tbecalled cut-constructible part of the am-
plitude. The remaining rational part is obtained using kngoperties of the collinear limit . In
supersymmetric theories, which have improved ultra-tib&haviour, the rational part vanishes.

Recently, new ideas (for a review see [9]) on twistors [1QJjti¥pole cuts (generalized uni-
tarity) [11], recursion relations [12, 13, 14, 15], unitarin D-dimension [16, 17] and the use
of algebraic parametric integration technique [18] havaentoe unitarity cut method even more
promising. It appears that ultimately one can find an efficedgorithm which can be used to
calculate the full one-loop amplitudes in terms of treeslemplitudes.

Here we briefly describe a semi-numerical four dimensiomgiuty method [19] which ex-
pands the algebraic method of ref. [18] by developing a nigakscheme. The numerical algo-
rithm evaluates only the cut-constructible part of the twwg amplitudes?

2. Structure of the one loop amplitude

The generid-dimensionaN-particle one-loop amplitude (fig. 1) is given By

A (P1, P2, -+, Pn; |
APy Parpr) = [l L D @)

wherep; represent the momenta flowing into the amplitude, @iti= d°I. The numerator struc-
ture A4 (p1, P2,-.., Pn;l) is generated by the particle content and is a function of ifiew mo-

1This scheme has been extended recently into a semi-numBridenensional unitarity method [20]. For other
promising methods for calculating the rational parts sefs.R21, 22].
2We restrict our discussion to (color) ordered external.|&d& extension to more general cases is straightforward.
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Figure1: The generid\N-point loop amplitude.

menta and the loop momentum. Since the whole amplitude lesesag on a common denominator,
the numerator can also include some propagator factorsddjendence of the amplitude on other
guantum numbers has been suppressed. The denominatooduetpof inverse propagators

i 2
di:di(l):“—i‘Qi)z_mZ:(l_QO+lei> —ny, (2.2)
i=

where the 4-vectogy parameterizes the arbitrariness in the choice of loop mumenThe one-
loop amplitude irD = 4 — 2¢ can be decomposed in a basis set of scalar master integrialg gi

MN(pla p27"'apN): Z ail(p17p27"'7pN)|i1a+ Z biliz(pl7p27"'7pN)|i1i2

1<11<N 1<i1<12<N
+ Y Ciiaia(P1 P2, PN igizia + > igizigia (P1; P25 - - s PN)igisisiy » (2-3)
1<i1<ipz<iz<N 1<i<ipx<izg<ia<N
where the master integrals are given by;,...,, = [[d]] ﬁ . Analytic expressions fobD-

dimensional master integrals with massless internal Ianlesréﬂported in ref. [7]. The correspond-
ing results for divergent integrals with some massive irdetines are reported in ref. [23]. The
maximum number of master integrals is determined by the wsmeaality, D, of space-time; for
the physical case this gives up to 4-point master integréle unitarity cut method is based on
the study of the analytic structure of the one-loop ampétu@he coefficients are rational func-
tions of the kinematic variables and will, in general, dapen the dimensional regulator variable
€ = (4—D)/2. When all the coefficients of the master integrals are tatied in 4 dimensions
we obtain the “cut-constructible” part of the amplitude.elemaining “rational part” is generated
by the omitteds(¢) part of the master integral coefficients. For a numericat@dore we need to
recast the study of the analytic properties of the unitamityamplitudes into an algebraic algorithm
which can be implemented numerically. In ref. [18] it wasgwsed that one focus on the integrand
of the one-loop amplitude,

JV(ppr?"'?pN;I)

iy dn (2.4)

»Q{N(pla p27"'7pN||) =
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This is a rational function of the loop momentum. We can rpregs the rational function in an
expansion over 4-, 3-, 2- and 1-propagator pole terms. Téidues of these pole terms contain
the master integral coefficients as well as structures #fleet spurious terms) which reside in
the “trivial” space, the subspace orthogonal to the “phgl8ispace. The physical space is the
subspace spanned by the external momenta of the corresgomdister integral. The spurious
terms are important as subtraction terms in the deterroimadf lower multiplicity poles. After
integration over the loop momenta, Eq. (2.3) is recoverdus @pproach transforms the analytic
unitarity method into the algebraic problem of partial fraing a multi-pole rational function and
allows for a numerical implementation.

3. Parameterization of the loop momentum on the unitarity cuts

We restrict ourselves to a 4-dimensional space. Given tretanintegral decomposition of
Eqg. (2.3) we can partial fraction the integrand of any 4-disienalN-particle amplitude as

a3, (1) bii, (1) Ciyisis (1) iyizisia (1)
JZ{ I — 1 + 112 + 11213 + 1121314 . 31
v di, di, di, di, di, di, di,di,di, S

1<i1<N 1<i1<I2<N 1<i1<liz<iz<N d|3 1<i)<ip<iz<ig<N

To calculate the numerator factors, one evaluates theuesilly taking the inverse propagators
equal to zero. The residue has to be taken by constructingptipemomentun;;...x such that
di(lij..k) = dj(lij..k) = - -- = d(lij..x) = 0. Then the residue of a functidf(l) is given by

Res;.«[F(1)] = <di(l)dj(l)---dk(I)F (|))J . (3.2)

|:|ij---k

The quadruple and triple pole residues are now given by as

— dij (1
dijkl (|) = R6$jk| <$27N(|)) , Cijk(l) = Re$jk (;Z/N(I) —I > di(lej(Id(k()jl ) ’ (3.3)

with similar expressions for the douldg;, (1) and singles;, (1) pole residues. As an illustration we
briefly outline how to construct the residue functions foaduple cuts.

4. The quadrupoleresidue

To calculate the box coefficients we choose the loop momengunsuch that four inverse
propagators are equal to zero,

diju (lijki ) = Resju <WN(|)) di(lijw ) = dj(lij ) = d(lijur ) = i (liji) =0. (4.1)

We will drop the subscripts on the loop momentum in the foitayy Because we have to solve the
unitarity constraints explicitly, we have to choose a sfiegarameterization. In ref. [19] the van
Neerven-Vermaseren basis [24] is used which gives a vegyalgitarameterization of the “trivial”
and the “physical”’ space in terms of dual vectors constdufrtem the inflow momenta for a given
cut type. We can decompose the loop momentum as

M=V +arnf . (4.2)
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The variablea; will be determined such that the unitarity conditiols= dj = dx = d, = 0 are
fulfilled. V4, is a well defined vector in the “physical” space constructedifthe three independent
inflow momentapn; is the unit vector of the one-dimensional trivial space. @mas two complex

solutions
=V i/ VZ—mPxnl (4.3)

which are easily numerically implemented. We note that the propagators are on-shell and the
amplitude factorizes for a given intermediate state intced-tevel amplitudes# (9. The residue
of the amplitude in Eq. (4.1) is given in terms of tree ampléds as

Resyi ((1%)) = A O(0F pria,. by —15) < A O By, = 1)
X ‘%(0)“%1 pk+17"'7p|;_||i) X %(0)(“:‘:- p|+1a"'7pi;_|ii) ’ (44)

where the loop momentg are complex on-shell momenta and there is an implicit sum alve
states of the cut lines (such as e.g. particle type, colticityy. The tree-level 3-gluon amplitudes,
///3(0), are non-zero because the two cut gluons have complex manietl Any remaining
dependence of the residﬁgm on the loop momentum enters through its component in thialtriv
space,ai”d (= aijk. (ny-1) . The number of powers of the loop momentlirm the numerator
structure is called the rank of the integral. After integmatwe find that(n; -1)2 ~ n? = 1. Thus
rank one is the maximum rank of a spurious term (which by dafimivanishes upon integration
overl). Hence the most general form of the residuéij@ (1) = diju +0Tijk| I -ny . Using the two
solutions of the unitarity constraint, Eq. (4.3), we now chatermine the two coefficients of the
residue

Resjk (JZ%N(VF)) + Resju (JZ%N(F)) g Resjk (JZ%N(H)) — Resju (JZ%N(F))
2 ) ijkl = Zi\/\m .
(4.5)

After the subtracting the quadruple cut contributions fribim amplitude we can repeat the proce-
dure for the triple, double and single cuts.

diji =

5. Numerical results

As an application in ref. [19] the 4-, 5- and 6-gluon scattgramplitudes at one-loop have
been recalculated with the new method. The cut-constilegtiirts of the ordered amplitudes are
also known analytically making a direct comparison possibAlso, the 6-gluon amplitude was
numerically evaluated using the integration-by-partshoét[2]. To compare with the analytic
results 100,000 flat phase space events has been genenated B (n— 2) gluon scattering.
The events are required to have cuts in order to avoid softaltidear regions in the momenta of
the outgoing gluons. The evaluation time for 10,000 evesitéor a 2— 2 gluon ordered helicity
amplitude 9 seconds, for a2 3 gluon ordered helicity amplitude 35 seconds and for a fora4
gluon ordered helicity amplitude 107 seconds. Note thatgugie integration-by-parts method of
ref. [2] the evaluation time for 10,000 events would be appnately 90,000 second. The six-
gluon evaluation is only three times slower than the five glagaluation and eleven times slower
than the four gluon amplitude.
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6. Summary and Outlook

The numerical unitarity method provides an efficient mettmevaluate next-to-leading order
corrections to multi-leg hard scattering amplitudes. #&pglicable for processes including massive
and massless particles as well as bosons and fermions. &eeptty it has been generalized to
D-dimensions so one can reconstruct the full amplitude d@iolyithe rational part [20]. We expect
that in the future it will be used in a number of important phgsapplications.
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