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1. Introduction

At the LHC the observation of hard processes with many jets, gauge bosons and perhaps heavy
new particles and their subsequent theoretical interpretation is of primary importance. The quanti-
tative analysis of these processes requires the knowledge of the corresponding cross-sections and
correlations at next-to-leading order (NLO) accuracy in perturbative QCD. The standard method
of calculation based on Feynman diagrams becomes very cumbersome for multi-leg processes. In
gauge theories the conventional Feynman diagram method produces intermediate results which are
much more complicated then the final answer. The number of Feynman graphs grows very fast
with the number of external legs. For a tree-levelN-gluon scattering the number of individual
Feynman graphs is approximatelyN(N−3) (within 5% accuracy up to 16 gluons) [1]. This decom-
position generates a large number of terms. With a growing number of external particles it becomes
a forbidding task to simplify the resultant expression analytically. Recently more numerical tech-
niques have been developed (see e.g. ref. [2]). However, because of the stronger than exponential
growth in the number of Feynman diagrams these brute-force methods become computationally
very intensive for amplitudes with six or more legs.

Unitarity methods have been suggested as an alternative, more efficient procedure for loop
calculations a long time ago [3, 4, 5]. Their use in the context of gauge theories is especially ben-
eficial [6, 7]. The computing time is governed by the efficiency in computing tree amplitudes and
by the number of cuts. In these applications, the unitarity cut is four dimensional. This allows
the use of helicity method and surprisingly simple analyticanswers [8] have been derived. The
four-dimensional unitarity method reconstructs only the so-called cut-constructible part of the am-
plitude. The remaining rational part is obtained using known properties of the collinear limit . In
supersymmetric theories, which have improved ultra-violet behaviour, the rational part vanishes.

Recently, new ideas (for a review see [9]) on twistors [10], multi-pole cuts (generalized uni-
tarity) [11], recursion relations [12, 13, 14, 15], unitarity in D-dimension [16, 17] and the use
of algebraic parametric integration technique [18] have made the unitarity cut method even more
promising. It appears that ultimately one can find an efficient algorithm which can be used to
calculate the full one-loop amplitudes in terms of tree-level amplitudes.

Here we briefly describe a semi-numerical four dimensional unitarity method [19] which ex-
pands the algebraic method of ref. [18] by developing a numerical scheme. The numerical algo-
rithm evaluates only the cut-constructible part of the one-loop amplitudes.1

2. Structure of the one loop amplitude

The genericD-dimensionalN-particle one-loop amplitude (fig. 1) is given by2

AN(p1, p2, . . . , pN) =

∫

[d l]
N (p1, p2, . . . , pN; l)

d1d2 · · ·dN
, (2.1)

wherepi represent the momenta flowing into the amplitude, and[d l] = dDl . The numerator struc-
ture N (p1, p2, . . . , pN; l) is generated by the particle content and is a function of the inflow mo-

1This scheme has been extended recently into a semi-numerical D-dimensional unitarity method [20]. For other
promising methods for calculating the rational parts see Refs. [21, 22].

2We restrict our discussion to (color) ordered external legs. The extension to more general cases is straightforward.
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Figure 1: The genericN-point loop amplitude.

menta and the loop momentum. Since the whole amplitude has been put on a common denominator,
the numerator can also include some propagator factors. Thedependence of the amplitude on other
quantum numbers has been suppressed. The denominator is a product of inverse propagators

di = di(l) = (l +qi)
2−m2

i =

(

l −q0+
i

∑
j=1

pi

)2

−m2
i , (2.2)

where the 4-vectorq0 parameterizes the arbitrariness in the choice of loop momentum. The one-
loop amplitude inD = 4−2ε can be decomposed in a basis set of scalar master integrals giving

AN(p1, p2, . . . , pN) = ∑
1≤i1≤N

ai1(p1, p2, . . . , pN)Ii1 ,+ ∑
1≤i1<i2≤N

bi1i2(p1, p2, . . . , pN)Ii1i2

+ ∑
1≤i1<i2<i3≤N

ci1i2i3(p1, p2, . . . , pN)Ii1i2i3 + ∑
1≤i1<i2<i3<i4≤N

di1i2i3i4(p1, p2, . . . , pN)Ii1i2i3i4 , (2.3)

where the master integrals are given byIi1···iM =
∫

[d l] 1
di1···diM

. Analytic expressions forD-
dimensional master integrals with massless internal linesare reported in ref. [7]. The correspond-
ing results for divergent integrals with some massive internal lines are reported in ref. [23]. The
maximum number of master integrals is determined by the dimensionality,D, of space-time; for
the physical case this gives up to 4-point master integrals.The unitarity cut method is based on
the study of the analytic structure of the one-loop amplitude. The coefficients are rational func-
tions of the kinematic variables and will, in general, depend on the dimensional regulator variable
ε = (4−D)/2. When all the coefficients of the master integrals are calculated in 4 dimensions
we obtain the “cut-constructible” part of the amplitude. The remaining “rational part” is generated
by the omittedO(ε) part of the master integral coefficients. For a numerical procedure we need to
recast the study of the analytic properties of the unitaritycut amplitudes into an algebraic algorithm
which can be implemented numerically. In ref. [18] it was proposed that one focus on the integrand
of the one-loop amplitude,

AN(p1, p2, . . . , pN|l) =
N (p1, p2, . . . , pN; l)

d1d2 · · ·dN
. (2.4)
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This is a rational function of the loop momentum. We can re-express the rational function in an
expansion over 4-, 3-, 2- and 1-propagator pole terms. The residues of these pole terms contain
the master integral coefficients as well as structures (so-called spurious terms) which reside in
the “trivial” space, the subspace orthogonal to the “physical” space. The physical space is the
subspace spanned by the external momenta of the corresponding master integral. The spurious
terms are important as subtraction terms in the determination of lower multiplicity poles. After
integration over the loop momenta, Eq. (2.3) is recovered. This approach transforms the analytic
unitarity method into the algebraic problem of partial fractioning a multi-pole rational function and
allows for a numerical implementation.

3. Parameterization of the loop momentum on the unitarity cuts

We restrict ourselves to a 4-dimensional space. Given the master integral decomposition of
Eq. (2.3) we can partial fraction the integrand of any 4-dimensionalN-particle amplitude as

AN(l) = ∑
1≤i1≤N

ai1(l)
di1

.+ ∑
1≤i1<i2≤N

bi1i2(l)
di1di2

+ ∑
1≤i1<i2<i3≤N

ci1i2i3(l)
di1di2di3

+ ∑
1≤i1<i2<i3<i4≤N

di1i2i3i4(l)
di1di2di3di4

. (3.1)

To calculate the numerator factors, one evaluates the residues by taking the inverse propagators
equal to zero. The residue has to be taken by constructing theloop momentuml i j ···k such that
di(l i j ···k) = d j(l i j ···k) = · · · = dk(l i j ···k) = 0. Then the residue of a functionF(l) is given by

Resi j ···k [F(l)] ≡
(

di(l)d j(l) · · ·dk(l)F (l)
)⌋

l=li j ···k
. (3.2)

The quadruple and triple pole residues are now given by as

di jkl (l) = Resi jkl

(

AN(l)
)

, ci jk(l) = Resi jk

(

AN(l)− ∑
l 6=i, j,k

di jkl (l)

did jdkdl

)

, (3.3)

with similar expressions for the doublebi1i2(l) and singleai1(l) pole residues. As an illustration we
briefly outline how to construct the residue functions for quadruple cuts.

4. The quadrupole residue

To calculate the box coefficients we choose the loop momentuml i jkl such that four inverse
propagators are equal to zero,

di jkl (l i jkl ) = Resi jkl

(

AN(l)
)

di(l i jkl ) = d j(l i jkl ) = dk(l i jkl ) = dl (l i jkl ) = 0 . (4.1)

We will drop the subscripts on the loop momentum in the following. Because we have to solve the
unitarity constraints explicitly, we have to choose a specific parameterization. In ref. [19] the van
Neerven-Vermaseren basis [24] is used which gives a very natural parameterization of the “trivial”
and the “physical” space in terms of dual vectors constructed from the inflow momenta for a given
cut type. We can decompose the loop momentum as

l µ = Vµ
4 + α1 nµ

1 . (4.2)
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The variableα1 will be determined such that the unitarity conditionsdi = d j = dk = dl = 0 are
fulfilled. V4 is a well defined vector in the “physical” space constructed from the three independent
inflow momenta;n1 is the unit vector of the one-dimensional trivial space. Onefinds two complex
solutions

l µ
± = Vµ

4 ± i
√

V2
4 −m2

l ×nµ
1 , (4.3)

which are easily numerically implemented. We note that the four propagators are on-shell and the
amplitude factorizes for a given intermediate state into 4 tree-level amplitudesM (0). The residue
of the amplitude in Eq. (4.1) is given in terms of tree amplitudes as

Resi jkl

(

AN(l±)
)

= M
(0)(l±i ; pi+1, . . . , p j ;−l±j )×M

(0)(l±j ; p j+1, . . . , pk;−l±k )

× M
(0)(l±k ; pk+1, . . . , pl ;−l±l )×M

(0)(l±l ; pl+1, . . . , pi ;−l±i ) , (4.4)

where the loop momental µ
n are complex on-shell momenta and there is an implicit sum over all

states of the cut lines (such as e.g. particle type, color, helicity). The tree-level 3-gluon amplitudes,
M

(0)
3 , are non-zero because the two cut gluons have complex momenta [11]. Any remaining

dependence of the residuedi jkl on the loop momentum enters through its component in the trivial
space,di jkl (l) ≡ di jkl (n1 · l) . The number of powers of the loop momentuml in the numerator
structure is called the rank of the integral. After integration we find that(n1 · l)2 ∼ n2

1 = 1. Thus
rank one is the maximum rank of a spurious term (which by definition vanishes upon integration
over l ). Hence the most general form of the residue isdi jkl (l) = di jkl + d̃i jkl l ·n1 . Using the two
solutions of the unitarity constraint, Eq. (4.3), we now candetermine the two coefficients of the
residue

di jkl =
Resi jkl

(

AN(l+)
)

+Resi jkl

(

AN(l−)
)

2
, d̃i jkl =

Resi jkl

(

AN(l+)
)

−Resi jkl

(

AN(l−)
)

2i
√

V2
4 −m2

l

.

(4.5)
After the subtracting the quadruple cut contributions fromthe amplitude we can repeat the proce-
dure for the triple, double and single cuts.

5. Numerical results

As an application in ref. [19] the 4-, 5- and 6-gluon scattering amplitudes at one-loop have
been recalculated with the new method. The cut-constructible parts of the ordered amplitudes are
also known analytically making a direct comparison possible. Also, the 6-gluon amplitude was
numerically evaluated using the integration-by-parts method [2]. To compare with the analytic
results 100,000 flat phase space events has been generated for the 2→ (n− 2) gluon scattering.
The events are required to have cuts in order to avoid soft andcollinear regions in the momenta of
the outgoing gluons. The evaluation time for 10,000 events is: for a 2→ 2 gluon ordered helicity
amplitude 9 seconds, for a 2→ 3 gluon ordered helicity amplitude 35 seconds and for a for a 2→ 4
gluon ordered helicity amplitude 107 seconds. Note that using the integration-by-parts method of
ref. [2] the evaluation time for 10,000 events would be approximately 90,000 second. The six-
gluon evaluation is only three times slower than the five gluon evaluation and eleven times slower
than the four gluon amplitude.
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6. Summary and Outlook

The numerical unitarity method provides an efficient methodto evaluate next-to-leading order
corrections to multi-leg hard scattering amplitudes. It isapplicable for processes including massive
and massless particles as well as bosons and fermions. Very recently it has been generalized to
D-dimensions so one can reconstruct the full amplitude including the rational part [20]. We expect
that in the future it will be used in a number of important physics applications.
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