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Massless propagators: K. G. Chetyrkin

1. Introduction

Propagators — that is Feynman Integrals depending on only one external momenta — ap-
peared in QFT from its very beginning, for instance, in the description of the vacuum polarization
in QED and since then constitute an important set of Feynman integrals to deal with.

Massless propagators are an indispensable tool in Renormalization Group (RG) calculations
within the framework of Dimensional Regularization [1] andthe so-called Minimal Subtractions
schemes [2].

Massless propagators appear in many important physical applications. The total cross-section
of e+e− annihilation into hadrons, the Higgs decay rate into hadrons, the semihadronic decay rate
of the τ lepton, the running of the fine structure coupling are all computable in the high energy
limit in terms of massless propagators.

The strong coupling constantαs is one of the three fundamental gauge couplings constants of
the Standard Model of particle physics. Its precise determination is one of the most important aims
of particle physics. One of the most precise and theoretically safe determination ofαs is based on
measurements of the cross section for electron-positron annihilation into hadrons. These have been
performed in the low-energy region between 2 GeV and 10 GeV and, in particular, at and around
theZ resonance at 91.2 GeV. Conceptually closely related is the measurement of the semileptonic
decay rate of theτ-lepton, leading to a determination ofαs at a scale below 2 GeV.

From the theoretical side, in the framework of perturbativeQCD, these rates and cross sec-
tions are evaluated as inclusive rates into massless quarksand gluons [3, 4]. (Power suppressed
mass effects are well under control fore+e−-annihilation, both at low energies and around theZ
resonance, and forτ decays [5, 6, 7, 8, 9, 10], and the same applies to mixed QCD andelectroweak
corrections [11, 12]).

The ratioR(s)≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−) is expressed through the absorptive
part of the correlator

Πµν(q) = i
∫

dxeiqx〈0|T[ jem
µ (x) jem

ν (0) ]|0〉 = (−gµνq2 +qµqν)Π(−q2) , (1.1)

with the hadronic EM currentjem
µ = ∑ f Qf ψ f γµψ f , andQf being the EM charge of the quarkf .

The optical theorem relates the inclusive cross-section and thus the functionR(s) to the disconti-
nuity of Π in the complex plane

R(s) = 12π ImΠ(−s− iδ ) . (1.2)

The renormalization mode of the polarization operatorΠ(Q2) reads (see, e.g. [3])

1+e2Π(Q2/µ2,αs) = Zph
3 +e2Π0(Q

2,α0
s ), , (1.3)

wheree=
√

α 4π andα is the (renormalazied) fine structure constant. Eq. (1.3) can be naturally
deduced from the connection betweenΠ(Q2) and the photon propagatorDµν(q)

Dµν(q) = gµν
i

q2

1
1+e2 Π(q2 = −Q2)

.
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It is also convenient to introduce the Adler function as

D(Q2) = −12π2Q2 d
dQ2 Π(Q2) =

∫ ∞

0

Q2 R(s)ds
(s+Q2)2 . (1.4)

We define the perturbative expansions

D(Q2) =
∞

∑
i=0

dia
i
s(Q

2), R(s) =
∞

∑
i=0

r ia
i
s(s), (1.5)

whereas≡ αs/π and we have set the normalization scaleµ2 = Q2 or oµ2 = s for the Euclidian and
Minkowskian functions respectively. The results for generic values ofµ can be easily recovered
with standard RG techniques.

For the vector correlator the terms of ordera2
s anda3

s have been evaluated nearly thirty and
about fifteen years ago [13, 14], respectively. Thea4

s corrections are conveniently classified ac-
cording to their power ofnf , with nf denoting the number of light quarks. Thea4

sn3
f term is part

of the “renormalon chain”, the evaluation of the next term, of order a4
sn2

f , was a test case for the
techniques used extensively in this paper and, furthermore, led to useful insights into the structure
of the perturbative series already [15]. The rest: two remaining most difficult terms of ordersa4

sn2
f

anda4
sn0

f of equivalent complexity1 are not yet known. The results of their (partial) evaluationwill
be presented in the talk.

2. Calculation of d4 at nf = 3

The complete five-loop calculation requires the evaluationof 2671 Abelian quenched plus
about seventeen thousand non-abelian and non-quenched diagrams (see Fig 1).

(a) (b) (c) (d)

Figure 1: (a) (a),(b) Examples of five -loop quenched Abelian diagramsof ordera4
sn0

f . (c) A five -loop
non-abelian diagram. (d) A five -loop non-quenched abelian diagram of ordera4

snf

Using “infrared rearrangement” [16], theR∗ operation [17] and the prescriptions formulated in
[18] to algorithmically resolve the necessary combinatorics, it is possible to express the absorptive
part of the five-loop diagrams in terms of four-loop masslesspropagator integrals (“p-integrals”).
Using then a representation for Feynman integrals proposedin [19, 20], these p-integrals can be
reduced to a sum of 28 master integrals, with coefficients which are rational functions of the space-
time dimensionD. These coefficients were, in a first step, evaluated in the large-D limit, and,

1In the sense that they both contain all possible topologies.
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after evaluating sufficiently many terms of the 1/D expansion, fully reconstructed [21]. This direct
and largely automatic procedure required enormous computing resources and was performed on a
32+8-node SGI parallel computer with SMP architecture and on the HP XC4000 supercomputer of
the federal state Baden-Württemberg using a parallel version [22] of FORM [23].

The construction of the large-D limit requires in general huge storage resources, which nat-
urally constrains the structure of the input p-integrals: they should better not contain any extra
parameters like color coefficients,nf –the number of light quark flavours contributing to internal
fermion loops–, and so on. As a result we are forced to use a “slice” approach: that is to set all
color coefficients to their numerical values and to fixnf to some integer. Thus, in order to compute
the remaining two not-yet-knownα4

s contributions toR(s) one should compute two slices:nf = 0
andnf = n0. Heren0 stands for any non-zero integer which could be chosen at will. Since the
evaluation of every single slice is a problem by itself, we decided to start fromn0 = 3 as the result
has important physical applications for the analysis of theQCD corrections to hadronicτ-decays
(see, e.g. [4]).

Our result reads (we suppress the trivial factor 3∑ f Q2
f throughout2)

d4(nF = 3) =
78631453

20736
− 1704247

432
ζ3 +

4185
8

ζ 2
3 +

34165
96

ζ5−
1995
16

ζ7 (2.1)

≈ 49.0757. (2.2)

The corresponding expression forR(s) is:

1+as+1.6398a2
s +6.3710a3

s −106.8798a4
s . (2.3)

Since it will presumably take a long time until the next term of the perturbative series will
be evaluated, it is of interest to investigate the predictive power of various optimization schemes
empirically. Using the principles of “Fastest Apparent Convergence” (FAC) [24] or of “Minimal
Sensitivity” (PMS) [25], which happen to coincide in this order, one gets [26, 27]

dpred
4 (nf = 3) = 27±16,

with the central value of differing significantly from the exact result

dexact
4 (nf = 3) = 49.08. (2.4)

However, within the error estimates [27], predicted and exact values are in agreement. The picture
changes, once these estimates are used to predict the coefficient r4. The prediction for the final
result is significantly closer (in a relative sense) to the result of the exact calculation:

rpred
4 (nf = 3) = −129±16, rexact

4 (nf = 3) = −106.88. (2.5)

This is in striking contrast to the case of the scalar correlator, where the predictions for the dy-
namical terms work well, but, as a consequence of the strong cancellations between dynamical and
kinematical terms fail completely in the Minkowskian region [28].

2In this paper we present the results for the so-called “non-singlet” diagrams, where one and the same closed
quark line is connected to the external currents. These are sufficient for a complete description ofτ-decays. Fore+e−

annihilation they correspond to the dominant terms proportional∑ f Q2
f . The singlet contributions proportional(∑ f Q f )

2

arise for the first time inO(α3
s ). They are known to be small, and will be evaluated at a later point.
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3. Colour structure of d4

In general, it would be of great interest to know theα4
s contribution for a generic color group.

The structure of the result for, say, Adler function, may be predicted from [29]:

d4 = ∑
i=1,12

d4,i c4,i , (3.1)

with the coefficientsd4,i being polynomials in ln( µ2

Q2 ) and the following colour factors read

c4 = {dRC4
F , dRC3

FCA , dRC2
FC2

A , dRCFC3
A , dRC3

FTFnf , dRC2
FCATFnf ,

dRCFC2
ATFnf , dRC2

FT2
F n2

f , dRCFCAT2
F n2

f , dRCFT3
F n3

f , dabcd
F dabcd

A , nf dabcd
F dabcd

F }.
(3.2)

Here[TaTa]i j =CFδi j and f acd f bcd =CAδ ab are the quadratic Casimir operators of the fundamental
and the adjoint representation of the Lie algebra and tr(TaTb) = TFδ ab is the trace normalization of
the fundamental representation.dR is the dimension of the fermion representation (i.e. the number
of quark colours) andnf is the number of quark flavors. The exact definitions for the higher order
group invariantsdabcd

F dabcd
A anddabcd

F dabcd
F are given in [29]. For QCD with SU(3):

CF = 4/3, CA = 3, TF = 1/2, dR = 3, dabcd
F dabcd

A =
15
2

, dabcd
F dabcd

F =
5
12

.

We observe that to get the full colour structure ofd4 we should compute as many as eight extra
slices (as four slices are already available:d4,10 [30], d4,9 andd4,8 [15], as well asSU(3) with
nf = 3). Thus, complete evaluation ofd4 for generic colour group is a matter of future.

However, not all slices are equally difficult. For the case ofthe abelian U(1) group (QED!) the
colour coefficients have especially simple form:

CF = 1, CA = 0, TF = 1, dR = 1, dabcd
F dabcd

A = 0, dabcd
F dabcd

F = 1.

In addition the corresponding diagrams are somewhat simpler due to the absence of the three- and
four-gluon couplings as well as any vertexes with ghost lines. An even simpler slice corresponds
to case of quenched QED (qQED):

CF = 1, CA = 0, TF = 1, dR = 1, nf = 0, dabcd
F dabcd

A = 0, dabcd
F dabcd

F = 0.

Thus, in general the quenched QED contribution todn is equal to the coefficient in front of the
dR(CF)n structure in the colour decomposition ofdn.

Up to orderα3 the Adler function for qQED reads [14]

DqQED(α ,Q) = 1+3A− 3
2

A2− 69
2

A3, (3.3)

whereA = A(µ) = α(µ)
4π . Note thatDqQED(α ,µ/Q) does not depend on its second argument at

all, which means that it is an essentially finite, scheme-independent quantity. It is instructive to
compare eq. (3.3 ) to theβ -function of qQED, also known to the same order from [31, 32, 33]:

β qQED =
4
3

A

{

1+3A− 3
2

A2− 69
2

A3
}

. (3.4)
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One observes the validity of the relation

DqQED(α ,Q) =
4
3

Aβ qQED (3.5)

which can be easily proven in all orders of perturbation theory starting from (1.3). Thus, the
evaluation of the five-loop contribution toβ qQED provides with us another slice, namely withd4,1.

On the other hand, such a calculation is of importance by itself. Indeed, theβ - function of
qQED possesses a number of remarkable and intriguing features.

• It is gauge and scheme independent in all orders.

• Its coefficients are simple rational numbers at three and four loops3.

• If β qQED(α0) = 0 thenα = α0 leads to a self-consistentfinite solution of (massless) QED
[34, 35]

A detailed knot-theoretic explanation of the rationality property at three loop level was given
in [36, 37]. At four loop the problem was thoroughly investigated with the help of a dimensionally
background-field method in [37, 38]. Some hope that the rationality property is not accidental
but also holds in higher orders has been expressed in [38]. Unfortunately, no clear unambiguous
prediction as for the structure of higher (five loops and beyond) orders has ever been made.

We have computedd4,1. Our five loop result for theβ function reads:

β qQED =
4
3

A+4A2−2A3−46A4 +

(

4157
6

+ 128ζ3

)

A5. (3.6)

Thus our calculation ofd4,1 has solved the problem: the rationality ceases to exist starting from
fifth loop.

Acknowledgments.We thank David Broadhurst and Dirk Kreimer for useful discussions.
This work was supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbere-
ich/Transregio SFB/TR-9 “Computational Particle Physics”, by INTAS (grant 03-51-4007) and
by RFBR (grant 05-02-17645). The computer calculations were partially performed on the HP
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Note added.Recently we have finished the calculation ofd4 for a generic value ofnf . The
reader is referred to [39] for details and for the discussionof phenomenological applications of the
result.
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