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1. Introduction

Propagators — that is Feynman Integrals depending on ordyesternal momenta — ap-
peared in QFT from its very beginning, for instance, in theadiption of the vacuum polarization
in QED and since then constitute an important set of Feynmtagtals to deal with.

Massless propagators are an indispensable tool in Renpatiah Group (RG) calculations
within the framework of Dimensional Regularization [1] ati# so-called Minimal Subtractions
schemes [2].

Massless propagators appear in many important physicétappns. The total cross-section
of efe~ annihilation into hadrons, the Higgs decay rate into haslrtiee semihadronic decay rate
of the t lepton, the running of the fine structure coupling are all patable in the high energy
limit in terms of massless propagators.

The strong coupling constant; is one of the three fundamental gauge couplings constants of
the Standard Model of particle physics. Its precise deteaion is one of the most important aims
of particle physics. One of the most precise and theorétisafe determination odis is based on
measurements of the cross section for electron-positroimidation into hadrons. These have been
performed in the low-energy region between 2 GeV and 10 GaV iarparticular, at and around
theZ resonance at 91.2 GeV. Conceptually closely related is gesarement of the semileptonic
decay rate of the-lepton, leading to a determination of at a scale below 2 GeV.

From the theoretical side, in the framework of perturba@@D, these rates and cross sec-
tions are evaluated as inclusive rates into massless gaackgluons [3, 4]. (Power suppressed
mass effects are well under control f®fre -annihilation, both at low energies and around Zzhe
resonance, and fardecays [5, 6, 7, 8, 9, 10], and the same applies to mixed QCRlaatroweak
corrections [11, 12]).

The ratioR(s) = g(ete” — hadrong/o(e"e” — u™u~) is expressed through the absorptive
part of the correlator

Muv(a) Zi/dxeiqx<0|T[ IE()15M(0) ]10) = (—guv? + guay)(—%), (1.1)

with the hadronic EM currenty™ = ¥ 1 Q¢ @; yu s, andQs being the EM charge of the quark
The optical theorem relates the inclusive cross-secti@htlans the functiorR(s) to the disconti-
nuity of I in the complex plane

R(s) =12nimMN(—s—id). (1.2)
The renormalization mode of the polarization oper&io©?) reads (see, e.g. [3])
1+ &N(Q%/2,a5) = 2"+ €Mo(QP, )., (1.3)

wheree = v a4manda is the (renormalazied) fine structure constant. Eq. (1.8)bmanaturally
deduced from the connection betwd@(Q?) and the photon propagatdr,, (q)
Dy(a) = i 1
i = e T NP = -
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It is also convenient to introduce the Adler function as

d © Q? R(s)ds

D(Q) = ~12Q° 4 N(@) = | 5oz (1.4)
We define the perturbative expansions
D(Q?) = )3 diak(Q%), R(s) = )3 ria(s), (1.5)

whereas = as/mand we have set the normalization sgafe= Q? or o u? = sfor the Euclidian and
Minkowskian functions respectively. The results for gémenlues ofu can be easily recovered
with standard RG techniques.

For the vector correlator the terms of ord&randaZ have been evaluated nearly thirty and
about fifteen years ago [13, 14], respectively. Eiecorrections are conveniently classified ac-
cording to their power oh;, with n; denoting the number of light quarks. Tb@? term is part
of the “renormalon chain”, the evaluation of the next termower an?, was a test case for the
techniques used extensively in this paper and, furthernbedeo useful insights into the structure
of the perturbative series already [15]. The rest: two ramgi most difficult terms of orderzén%
andagn? of equivalent complexityare not yet known. The results of their (partial) evaluatioh
be presented in the talk.

2. Calculation ofdg atnf =3

The complete five-loop calculation requires the evaluatiérz671 Abelian quenched plus
about seventeen thousand non-abelian and non-quenclgdrdg(see Fig 1).

\\ g 3) % j /‘J . . Y

Figure 1: (a) (a),(b) Examples of five -loop quenched Abelian diagranfr‘srderag‘n? . (c) A five -loop
non-abelian diagram. (d) A five -loop non-quenched abeliagrdm of ordeadn;

Using “infrared rearrangement” [16], th& operation [17] and the prescriptions formulated in
[18] to algorithmically resolve the necessary combina®rit is possible to express the absorptive
part of the five-loop diagrams in terms of four-loop massf@spagator integrals (“p-integrals”).
Using then a representation for Feynman integrals propwsglD, 20], these p-integrals can be
reduced to a sum of 28 master integrals, with coefficientskwvare rational functions of the space-
time dimensionD. These coefficients were, in a first step, evaluated in thgefarlimit, and,

1In the sense that they both contain all possible topologies.
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after evaluating sufficiently many terms of theDlexpansion, fully reconstructed [21]. This direct
and largely automatic procedure required enormous compuéisources and was performed on a
32+8-node SGI parallel computer with SMP architecture anthe HP XC4000 supercomputer of
the federal state Baden-Wirttemberg using a parallela@f&i2] of FORM [23].

The construction of the large-limit requires in general huge storage resources, which nat
urally constrains the structure of the input p-integralseyt should better not contain any extra
parameters like color coefficientsas—the number of light quark flavours contributing to internal
fermion loops—, and so on. As a result we are forced to usei@"shpproach: that is to set all
color coefficients to their numerical values and torfio some integer. Thus, in order to compute
the remaining two not-yet-knowag contributions taR(s) one should compute two slices; = 0
andns = ng. Hereng stands for any non-zero integer which could be chosen at Bithce the
evaluation of every single slice is a problem by itself, weided to start fromny = 3 as the result
has important physical applications for the analysis of@@&D corrections to hadronit-decays
(see, e.qg. [4]).

Our result reads (we suppress the trivial factgr33% throughout)

78631453 1704247 418552 34165 1995

d =3) = — — 2.1
4(NF = 3) 20736 132 {3+ T (s 16 {7 (2.1)

~ 49.0757 (2.2)
The corresponding expression f(s) is:
1+ as+1.6398a2 +6.3710a3 — 10687984 (2.3)

Since it will presumably take a long time until the next terfrttee perturbative series will
be evaluated, it is of interest to investigate the predécpewer of various optimization schemes
empirically. Using the principles of “Fastest Apparent @engence” (FAC) [24] or of “Minimal
Sensitivity” (PMS) [25], which happen to coincide in thigler, one gets [26, 27]

dP"®%n¢ = 3) = 27+ 16,
with the central value of differing significantly from theaet result
dg*@i(ns = 3) = 49.08. (2.4)

However, within the error estimates [27], predicted anctexalues are in agreement. The picture
changes, once these estimates are used to predict the ieoeffic The prediction for the final
result is significantly closer (in a relative sense) to treulteof the exact calculation:

This is in striking contrast to the case of the scalar cotoelavhere the predictions for the dy-
namical terms work well, but, as a consequence of the strangatiations between dynamical and
kinematical terms fail completely in the Minkowskian regi@8].

2In this paper we present the results for the so-called “rioglst” diagrams, where one and the same closed
quark line is connected to the external currents. Theseudfieisnt for a complete description afdecays. Foete™
annihilation they correspond to the dominant terms praopoa ¢ Q%. The singlet contributions proportiong ¢ Q)2
arise for the first time i7(ag). They are known to be small, and will be evaluated at a lat@tpo
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3. Colour structure of dgq

In general, it would be of great interest to know thg&contribution for a generic color group.
The structure of the result for, say, Adler function, may bedicted from [29]:

ds = dajiCaj, (3.1)
i—T12

with the coefficientsls; being polynomials in |(lg—§) and the following colour factors read

Cq = {dRCé , dRCECA, dRCéC,%, dRCFCg‘, dRCgTF N, dRCéC/_\TF Ns, (3 2)

drCrC2Teny, dRCETENZ | dRCrCATZN? , drCe TSNS, d@bedgabed | ng gabedgaved)

Here[TaT3);; = Cr &; and f2°d4fP¢d = C,52P are the quadratic Casimir operators of the fundamental
and the adjoint representation of the Lie algebra afftf°) = Tr 52 is the trace normalization of
the fundamental representatiady, is the dimension of the fermion representation (i.e. thelmm

of quark colours) and; is the number of quark flavors. The exact definitions for tlgér order
group invariantsig*cddabed anddabeddaed are given in [29]. For QCD with SU(3):

15 5
Cr =4/3,Ca=3, Te =1/2, dr =3, "0 = =, 4" ™= .

We observe that to get the full colour structuredafwe should compute as many as eight extra
slices (as four slices are already availabi:o [30], dsg anddsg [15], as well asSU(3) with
ns = 3). Thus, complete evaluation dj for generic colour group is a matter of future.

However, not all slices are equally difficult. For the caséhefabelian U(1) group (QED!) the
colour coefficients have especially simple form:

Cr=1,Ca=0,Tg =1, dr =1, d2**%3>* = 0, g2>edga>cd = 1.

In addition the corresponding diagrams are somewhat sirdple to the absence of the three- and
four-gluon couplings as well as any vertexes with ghostslinén even simpler slice corresponds
to case of quenched QED (qQED):

Cr=1,Ca=0,Te =1,dr= 1, nf =0, d2*d3" = 0, d2"42"? = 0.

Thus, in general the quenched QED contributiordtds equal to the coefficient in front of the
dr (Cg)" structure in the colour decomposition d.
Up to ordera® the Adler function for gQED reads [14]

DIREP(a, Q) = 1+ 3A— gAZ — 6—29A3, (3.3)

whereA = A(u) = L&) Note thatDIF(a, 11/Q) does not depend on its second argument at

all, which means that it is an essentially finite, schemejmhdent quantity. It is instructive to
compare eq. (3.3 ) to the-function of gQED, also known to the same order from [31, 3; 3

4 3 69
GQRED _ “Al14+3A- A2 A3, 3.4
prosp {+ w8 (3.9)
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One observes the validity of the relation
4
D@, Q) = 5 AB™Y™ (3.5)

which can be easily proven in all orders of perturbation thesiarting from (1.3). Thus, the
evaluation of the five-loop contribution 87°EP provides with us another slice, namely withy;.

On the other hand, such a calculation is of importance byf.itbedeed, the§3- function of
gQED possesses a number of remarkable and intriguing &satur

e Itis gauge and scheme independent in all orders.
e Its coefficients are simple rational numbers at three andlémps’.

o If BIEP(ag) = 0 thena = ap leads to a self-consistefinite solution of (massless) QED
[34, 35]

A detailed knot-theoretic explanation of the rationalitpjperty at three loop level was given
in [36, 37]. At four loop the problem was thoroughly investigd with the help of a dimensionally
background-field method in [37, 38]. Some hope that the matity property is not accidental
but also holds in higher orders has been expressed in [38prtunately, no clear unambiguous
prediction as for the structure of higher (five loops and pejy@rders has ever been made.

We have computed, 1. Our five loop result for thg function reads:

[BUQED — g A+4A% 23— 46A% + (%57 + 128(3) A, (3.6)
Thus our calculation ofl4 1 has solved the problem: the rationality ceases to exidirgjarom
fifth loop.
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Note added.Recently we have finished the calculationdaffor a generic value ofi;. The
reader is referred to [39] for details and for the discussibphenomenological applications of the
result.
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