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This article reports our project on the automated calculation of QED corrections to the anomalous

magnetic moment of leptons. Our major concern is the tenth-order correction, which is urgently

needed considering the recent improvement of electrong−2 measurements. We focus on a type of

diagrams that have no internal lepton loops, and have devised the automated code-generating sys-

tem for the UV-renormalized amplitude. We have newly developed and implemented an efficient

algorithm to perform subtractions of IR divergences. This enables us to obtain finite amplitudes

that are free from both UV and IR divergences. Currently the numerical evaluation of these dia-

grams of tenth order is in progress.
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1. Introduction

The anomalous magnetic momentg−2 of the electron is one of the most precisely studied
quantities in the particle physics, and it has provided the most stringent test of QED. Recently,
a new measurement was carried out by a Harvard group using thePenning trap with cylindrical
cavity. Their value announced in 2006 is [1]1

ae = 1 159 652 180.85 (76)×10−12 [0.76ppb], (1.1)

whereae ≡ (g−2)/2 and the numeral in the parenthesis is the uncertainty in thelast two digits of
the value. It has a 5.5 times smaller uncertainty than the best previous value [2].

Theoretically, the electrong−2 is explained almost entirely by the electromagnetic interaction
between electron and photon alone (referred as mass-independent contributionA1), and it is given
as a function of the fine structure constantα . The QED correction is evaluated by the perturbation
theory as a series in terms ofα . To match the precision of the recent measurement, the theory must
include up to eighth-order corrections. Considering the further improvement of the measurement, it
is urgently required to evaluate the actual value of the unknown tenth-order termA(10)

1 . We employ
the numerical integration approach, which is the only practical means at present for the eighth and
higher order corrections.

The contribution toA(10)
1 comes from 12672 vertex-type Feynman diagrams, which are clas-

sified into 32 gauge-invariant groups within 6 super sets (Set I–VI) according to their structure
(Figure 1). 17 groups among these 32 groups have already beenevaluated [3]. A particularly diffi-
cult one is Set V consisting of 6354 vertex-type diagrams that have no closed lepton loops (called
q-type). The difficulty stems from the fact that they are large in number and many of them have very
complicated divergence structure. We will present our solution to this obstacle by an automated
scheme for code-generation, which enables us to create swiftly the numerical integration codes of
the renormalized and finite amplitude of the q-type diagrams[4, 5].

2. Parametric Integration Formalism

The anomalous magnetic momentae is given by the static limit of the magnetic form factor.
In our formulation, we first employ a relation derived from the Ward-Takahashi identity

Λν(p,q) ≃−qµ
[

∂Λµ(p,q)

∂qν

]

q→0
−

∂Σ(p)

∂ pν
(2.1)

between the self-energy partΣ(p) and the sum of the vertex partΛν(p,q). This reduces the number
of independent integrals substantially. For the tenth-order Set V diagrams, the number is, after
taking account of the time-reversal symmetry, reduced to 389.

2.1 Amplitude

The contribution of a 2nth-order diagramG is given by an integral over loop momenta of a
product of vertices and propagators of leptons and photons.It is turned into a parametric integral

1Note added: the Harvard group reported a new measurement [16] in which the precision of the value ofae is
improved by a factor 2.7 over the value (1.1).
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I(a) I(b) I(c) I(d) I(e) I(f)

I(g) I(h) I(i) I(j)

II(a) II(b) II(c) II(d) II(e) II(f)

III(a) III(b) III(c) IV V

VI(a) VI(b) VI(c) VI(d) VI(e) VI(f)

VI(g) VI(h) VI(i) VI(j) VI(k)

Figure 1: Classification of diagrams contributing to tenth-order QEDcorrections.

over Feynman parameterszi assigned to the propagators. Carrying out the momentum integration
analytically, we can express the amplitude in a concise form

M(2n)
G

=

(
−1
4

)n

(n−1)!
∫

(dz)G

[
1

n−1

(
E0 +C0

U2V n−1 +
E1+C1

U3V n−2 + · · ·

)

+

(
N0 + Z0

U2V n +
N1+ Z1

U3V n−1 + · · ·

)]
. (2.2)

The result is given symbolically as a function of quantitiescalled building blocks,Bi j, A j, U , V ,
andCi j, which are polynomials of Feynman parameters.

2.2 Subtraction of UV divergence

The amplitude constructed above is divergent in general. Weadopt subtractive renormaliza-
tion with the strategy that these divergences are subtracted away by appropriate integrals which
cancel the singularities point-by-point on the Feynman parameter space. This scheme is called
K-operation [6]. The subtraction integral factorizes into an exact lower-order amplitude and the
leading UV-divergent partLUV

S
of a vertex-renormalization constant when the divergent subdia-

gramS is of vertex type, and into the formδmUV
S MG /S +BUV

S
MG /[S , j] whenS is of self-energy

type. Here,δmUV
S andBUV

S
are the leading UV-divergent parts of mass and wave-function renor-

malization constants, respectively. When there is more than one divergent subdiagram, the whole
UV divergences are identified by the Zimmermann’s forests. The subtraction term associated with
a forest is obtained by successive operations ofK-operations of subdiagrams in the forest.
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2.3 Subtraction of IR divergence

A diagram suffers from IR divergences when it contains self-energy subdiagrams. In the old
approach employed in the numerical evaluation of sixth and eighth orders, the subtraction terms are
identified by power-counting rules in a particular limit of Feynman parameters, calledI-operation
[7]. However, some diagrams have linear divergences that were dealt in anad hoc way. To this
problem, we developed new subtraction schemes calledI-subtraction andR-subtraction. The IR
subtraction terms can be identified by the combination of these two subtraction operations. This
scheme relies totally on the diagrammatic property and is feasible for the automated treatment.

One type of IR divergence stems from our particular treatment of UV divergence. TheK-
operation for the self-energy subdiagram subtracts away only the leading partδmUV

S of the self-
mass term, and the remaining part̃δmS ≡ δmS −δmUV

S is regarded to introduce a spurious two-
point vertex effectively. This causes linear or more severeIR divergence. A remedy to this problem
is to subtract away the contribution of̃δmS by constructing an appropriate integral. We call this
operation asR-subtraction.

The other type of divergence arises in such a way that when themomenta of photons in the
residual diagramG /S go to zero the amplitude behaves factorized into a product ofthe magnetic
moment partMS of the subdiagramS and the vertex part̃LG /S (k) in this IR limit. The latter
accounts for the logarithmic IR divergence. Thus we preparea subtraction integral that cancels it.
We call this operation asI-subtraction.

For more complicated cases involving more than one self-energy subdiagram, the IR subtrac-
tion terms are given by the combinations ofI- and/orR-subtractions. They are recognized by a
forest-like structure of self-energy subdiagrams to whichthe information of distinct types of sub-
tractions is assigned. We call themannotated forests. The whole IR subtraction terms can be
identified by finding all possible annotated forests.

2.4 Residual renormalization

Thus far we have constructed the renormalized and finite integral of the amplitude of a di-
agram, but it is not fully equivalent to the standard on-shell renormalization. To complete the
calculation, the difference between the full renormalization and the intermediate renormalization
achieved so far must be evaluated by collecting all contributions. This step is called the residual
renormalization [8].

3. Automated Calculation

We developed an automated system that generates numerical integration codes for evaluating
q-type diagrams following the steps described in the previous section. It takes a single-line infor-
mation specifying the form of a diagram as an input, constructs the amplitude and the subtraction
terms, and produces FORTRAN codes readily integrated by thenumerical integration routine. The
system is implemented as a set of Perl programs, and the symbolic manipulations required in the in-
termediate steps are performed with the helps of FORM [9] andMaple. The numerical integrations
are processed by an adaptive Monte Carlo integration routine, VEGAS [10]. Our implementation
is applicable to arbitrary order of q-type diagrams.
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For the purpose of testing our system, we applied it to the evaluation of known diagrams of
fourth, sixth, and eighth orders. The fourth- and sixth-order contributions obtained by our codes
are, after taking account of the residual renormalization,−0.343 95(53), 0.905 26(53), respec-
tively [5], which reproduce well the exact results of the fourth-order term−0.344 166· · · [11, 12],
and the sixth-order term 0.904 979· · · [13], respectively.

For the eighth-order case, we have unexpectedly revealed aninconsistency in the treatment of
IR divergences in the previous calculation. With this errorcorrected, the old calculation,−2.179 16(343),
and the new calculation,−2.219(53), agree within the numerical precision employed [5].

These tests confirmed the validity of our automated system and encourages us to proceed to
the evaluation of the tenth-order contribution with confidence. The numerical calculation codes of
all 389 independent integrals that represent 6354 diagramsof Set V have already been obtained by
our system, and the numerical evaluation is now in progress.

4. Concluding Remarks

In this article we reported our project on the automated calculation of QED corrections to the
leptong−2. We developed a new treatment of IR divergences that is suited for automation. We
implemented the code-generating system for the type of diagrams that have no closed lepton loops.

The coefficient of the eighth-order contribution is revisedto the new value [14]

A(8)
1 = −1.914 4(35), (4.1)

and it is firmly established by the two independent, mutuallyconsistent evaluations. It should be
noted that this is the first independent check of the whole eighth-order term. The value of the fine
structure constant determined from the measurement (1.1) and the theory is revised to [15]

α−1(ae) = 137.035 999 070(98). (4.2)

Our code-generating system is primarily designed for the q-type diagrams, but it can be ex-
tended with slight modifications to the types of diagrams obtained by inserting vacuum polariza-
tions to q-type diagrams. The numerical evaluations of SetsIII(a), III(b) and IV (see Figure 1) have
been carried out. The results will be reported elsewhere.
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