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1. Introduction

In the range of small values of the Bjorken variablex, the contribution of heavy flavour corrections
to deep–inelastic structure functions is of the order of 20–40% and hence has to be known in detail
in the QCD analyses of the structure functions for high precision extractions of the parton densities
and the QCD scaleΛQCD [1]. In the full kinematic range, a semi–analytic result forthe heavy
flavour Wilson coefficients up to next–to–leading order exists [2], with a fast implementation to
Mellin–space given in [3], whereas a fully analytic result to O(α2

s ) could be achieved in the limit
Q2 ≫ m2 in [4], Q2 denoting the virtuality of the exchanged photon andm2 the mass of the heavy
quark. The corresponding Wilson coefficient forFL atO(α3

s ) was calculated in [5]. In this limit, the
heavy–flavour contributions can be expressed as a convolution of light–flavour Wilson coefficients
and massive operator matrix elements (OMEs) between light partonic states. The results in [4] have
been obtained using integration–by–parts techniques. We performed a first recalculation of these
OMEs in Mellin–space [6,7], using both Mellin–Barnes integrals and generalized hypergeometric
functions. This shifts the problem of solving complicated integrals of Nielsen–type in [4], to the
calculation of sums over products of harmonic sums [8, 9] depending on the Mellin–parameter
N, weighted binomials and Euler Beta–functions. The expressions in our result are even on the
diagrammatic level considerably smaller than the ones obtained in [4], and are more suitable to the
problem. In this paper, we show a first step towards the O(α3

s )–term of the heavy–flavour Wilson
coefficients, by calculating in dimensional regularization the O(ε)–term of the two–loop OMEs,
with ε = D−4.

2. Method

Our calculation is performed in the asymptotic limitQ2 ≫ m2, applying the light–cone expansion,
where, as the massless renormalization group equation (RGE) gives a splitting of the deep–inelastic
structure functionsF2/L into a convolution of perturbatively calculable Wilson coefficients and
non–perturbative parton distribution functions, the massive RGE allows to write the heavy flavour
contribution to the twist–2 Wilson coefficients as a convolution of light–flavour Wilson coefficients
and massive operator matrix elements [4]:

HS,NS
(2,L),i

(
Q2

µ2 ,
m2

µ2

)
= AS,NS

k,i

(
m2

µ2

)

︸ ︷︷ ︸
massive OMEs

⊗ CS,NS
(2,L),k

(
Q2

µ2

)
.

︸ ︷︷ ︸
light Wilson coefficients

These OMEs are universal objects, calculable via the corresponding flavour singlet, pure–singlet
and non–singlet operators between partonic states, determining the non–power contributions in
m2/Q2. The process dependence is then solely given by the masslesslight Wilson coefficients [10].
The OMEs contain ultraviolet and collinear divergences, the former being removed through renor-
malization, the latter absorbed into the parton distribution functions. To two–loop order, the renor-
malized gluonic OME reads:

A(2)
Qg =

1
8

{
P̂(0)

qg ⊗
[
P(0)

qq −P(0)
gg +2β0

]}
ln2

(
m2

µ2

)
−

1
2

P̂(1)
qg ln

(
m2

µ2

)

+a(1)
Qg ⊗

[
P(0)

qq −P(0)
gg +2β0

]
+ a(2)

Qg ,
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with similar expressions for the quarkonic contributions.Here,P(k−1)
i j are thekth–loop splitting

functions,β0 is the lowest order expansion coefficient of theβ–function, andµ2 the renormal-
ization and factorization scale.a(k)

i j and ā(k)
i j are theO(ε0) resp. O(ε)-terms in the expansion of

the OME. As a first step towards a O(α3
s ) calculation, one needs each of these quantities to one

additional order inε , since they then enter the constant term of the OME by multiplying the corre-
sponding splitting functions. The O(ε)–term of the OMEA(2)

i j , ā(2)
i j , is a new result presented here

and the main topic of this calculation.

3. Calculation

The diagrams can be grouped into two sets: one–loop in one–loop insertions and generic two–loop
diagrams. They are calculated usingFORM [11] andMAPLE programs.

The rules for operator insertion are, e.g., given in [12]. The calculation is done on the one
hand by the use of Mellin–Barnes integrals to produce numeric results. These results serve as a
check for the analytic results, obtained by expressing the diagrams as generalized hypergeometric
functions which are first expanded inε and then summed up to the desired order.
The application of Mellin–Barnes integrals for scalar diagrams in our framework has already been
explained in some detail before, cf. e.g. [6] (see also [13]). The idea is to express in a loop–by–loop
manner the sub–diagram of a full diagram into a Mellin–Barnes representation and to combine this
with the remaining part. For full diagrams with a numerator structure, one can make heavily use
of the fact that the light–like vector∆ occurring in the numerators obeys∆2 = 0. This reduces the
integrals to be calculated to a smaller set. After finding a suitable Mellin–Barnes integral repre-
sentation, we use the mathematica packageMB [14] to numerically calculate the Mellin–Barnes
integrals for fixed values of Mellin–N, up to a given order inε . As an example, Table 1 shows up
to some generic multiplicative factors the results for the full diagrame [7].

By closing the contour and applying the theorem of residues,it is in principle possible to even
obtain analytic results from the Mellin–Barnes representation [6]. However, the way of hyperge-
ometric functions turned out to be more appropriate for the calculation of analytic results. In this
case, one first introduces Feynman parameters and does the two momentum integrations. As an
example, the scalar version of diagrame with all propagators to the power one, evaluates to:

Ie : =
(∆p)N−1Γ(1− ε)

N(N +1)(4π)4+ε (m2)1−ε

∫ 1

0
dzdw

w−1−ε/2(1− z)ε/2z−ε/2

(z+ w−wz)1−ε

[

1−wN+1− (1−w)N+1

]

.

Table 1: Mellin moments N= 2 and N= 6 for diagrame.

Diagram N 1/ε2 1/ε 1 ε ε2

e 2 8.88889 −11.2593 9.82824 −12.8921 2.39145

6 2.93878 −4.24257 3.39094 −4.3892 0.826978
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On rewriting this Feynman parameter integral into aPFQ–function, one obtains a product of3F2–
functions and the Euler Beta–functionB(a,b) := Γ(a)Γ(b)/Γ(a+ b):

Ie =
c

N(N +1)
exp

{
∞

∑
i=2

ζi
ε i

i

}{

B(ε/2+1,1− ε/2)B(1,−ε/2) 3F2

[
1− ε ,1,1+ ε/2
2,1− ε/2

;1

]

−B(ε/2+1,1− ε/2)B(1,N +1− ε/2) 3F2

[
1− ε ,1,1+ ε/2
2,N +2− ε/2

;1

]

−B(ε/2+1,1− ε/2)B(N +2,−ε/2) 3F2

[
1− ε ,N +2,1+ ε/2
2,N +2− ε/2

;1

]}

,

c :=
S2

ε
(4π)4(m2)1−ε (∆p)N−1

One then expands this expression up to the desired order inε , in this obtaining finite and infinite
sums over harmonic sums and Beta–functions. It is the next step of summing up the various sums
over harmonic sums and more complicated expressions, whichconstitutes the most difficult part of
the calculation. These sums could be solved among other things using their integral representations,
where a certain amount of more complicated sums could be calculated using the mathematica
packageSIGMA [15,16]. For diagrame, one obtains up to O(ε):

Ie =
c

N(N +1)

{
S2

1(N)+3S2(N)

2
+

S3
1(N)+3S1(N)S2(N)+8S3(N)

12
ε

}

.

In a similar manner, it was possible to calculate all diagrams contributing to the calculation of the
O(ε)–term of the two–loop unpolarized OMEs. Here algebraic relations between harmonic sums
were used [17].

4. Results

The O(ε) contributions to the mass–renormalized unpolarized OMEsfor the singlet, pure–singlet,
and non–singlet cases read:

4
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a(2)
Qg = TRCF

{
2
3

(N2 +N +2)(3N2 +3N +2)

N2(N +1)2(N +2)
ζ3 +

P1

N3(N +1)3(N +2)
S2

+
N4−5N3−32N2−18N −4

N2(N +1)2(N +2)
S2

1 +
N2 +N +2

N(N +1)(N +2)

(
16S2,1,1−8S3,1

−8S2,1S1 +3S4−
4
3

S3S1−
1
2

S2
2−S2S2

1−
1
6

S4
1 +2ζ2S2−2ζ2S2

1−
8
3

ζ3S1

)

−8
N2−3N −2

N2(N +1)(N +2)
S2,1 +

2
3

3N +2
N2(N +2)

S3
1

+
2
3

3N4 +48N3 +43N2−22N −8
N2(N +1)2(N +2)

S3 +2
3N +2

N2(N +2)
S2S1 +4

S1

N2 ζ2

+
N5 +N4−8N3−5N2−3N −2

N3(N +1)3 ζ2

−2
2N5−2N4−11N3−19N2−44N −12

N2(N +1)3(N +2)
S1 +

P2

N5(N +1)5(N +2)

}

+TRCA

{
N2 +N +2

N(N +1)(N +2)

(
16S−2,1,1−4S2,1,1−8S−3,1−8S−2,2−4S3,1−

2
3

β ′′′

+9S4−16S−2,1S1 +
40
3

S1S3 +4β ′′S1−8β ′S2 +
1
2

S2
2−8β ′S2

1 +5S2
1S2 +

1
6

S4
1

−
10
3

S1ζ3−2S2ζ2−2S2
1ζ2−4β ′ζ2−

17
5

ζ 2
2

)

+
4(N2−N −4)

(N +1)2(N +2)2

(
−4S−2,1 +β ′′−4β ′S1

)
−

2
3

N3 +8N2 +11N +2
N(N +1)2(N +2)2 S3

1

+8
N4 +2N3 +7N2 +22N +20

(N +1)3(N +2)3 β ′ +2
3N3−12N2−27N −2

N(N +1)2(N +2)2 S2S1

−
16
3

N5 +10N4 +9N3 +3N2 +7N +6
(N −1)N2(N +1)2(N +2)2 S3−8

N2 +N −1
(N +1)2(N +2)2 ζ2S1

−
2
3

9N5−10N4−11N3 +68N2 +24N +16
(N −1)N2(N +1)2(N +2)2 ζ3−

P3

(N −1)N3(N +1)3(N +2)3 S2

−
2P4

(N −1)N3(N +1)3(N +2)2 ζ2−
P5

N(N +1)3(N +2)3 S2
1

+
2P6

N(N +1)4(N +2)4 S1−
2P7

(N −1)N5(N +1)5(N +2)5

}

.

a
NS,(2)
qq,Q = TF CF

(

4

3
S4 +

4

3
S2ζ2 −

8

9
S1ζ3 −

20

9
S3 −

20

9
S1ζ2 + 2

3N2 + 3N + 2

9N(N + 1)
ζ3

+
112

27
S2 +

3N4 + 6N3 + 47N2 + 20N − 12

18N2(N + 1)2
ζ2 −

656

81
S1 +

P8

648N4(N + 1)4

)

a
PS,(2)
Qq = TF CF

(

−2
(5N3 + 7N2 + 4N + 4)(N2 + 5N + 2)

(N − 1)N3(N + 1)3(N + 2)2

“

2S2 + ζ2

”

−

4

3

(N2 + N + 2)2
“

3S3 + ζ3

”

(N − 1)N2(N + 1)2(N + 2)
+ 2

P9

(N − 1)N5(N + 1)5(N + 2)4

)

.

with the polynomialsPi given by

5



P
o
S
(
R
A
D
 
C
O
R
 
2
0
0
7
)
0
3
4

Heavy Flavour Production J. Blümlein

P1 =3N6 + 30N5 + 15N4
− 64N3

− 56N2
− 20N − 8 ,

P2 =8N10 + 24N9
− 11N8

− 128N7
− 195N6

− 119N5
− 23N4

− 27N3
− 45N2

− 24N − 4 ,

P3 =N9 + 21N8 + 85N7 + 105N6 + 42N5 + 290N4 + 600N3 + 456N2 + 256N + 64

P4 =(N3 + 3N2 + 12N + 4)(N5
− N4 + 5N2 + N + 2) ,

P5 =N6 + 6N5 + 7N4 + 4N3 + 18N2 + 16N − 8 ,

P6 =2N8 + 22N7 + 117N6 + 386N5 + 759N4 + 810N3 + 396N2 + 72N + 32 ,

P7 =4N15 + 50N14 + 267N13 + 765N12 + 1183N11 + 682N10
− 826N9

− 1858N8

− 1116N7 + 457N6 + 1500N5 + 2268N4 + 2400N3 + 1392N2 + 448N + 64

P8 =1551N8 + 6204N7 + 15338N6 + 17868N5 + 8319N4 + 944N3 + 528N2

− 144N − 432

P9 =5N11 + 62N10 + 252N9 + 374N8
− 400N6 + 38N7

− 473N5

− 682N4
− 904N3

− 592N2
− 208N − 32 .

Here,Si,..., j ≡ Si,..., j(N), β ≡ β (N + 1), andζi ≡ ζ (i) is Riemann’s Zeta-function. In all results,
there is an overall factorS2

ε a2
s (m

2/µ2)ε and an overall factor(1+ (−1)N)/2 in all singlet and
pure–singlet cases. The above Mellin-space expressions can be converted tox-space using analytic
continuation inN and Mellin inversion [18].

5. Comparison

The results in [4], which are up to constant order inε , involved 48 basic functions, cf. [7]. Our
results for the constant part of the OMEs gave raise to only six harmonic sums, where five of them
can be obtained fromS1(N) through differentiation after analytic continuation and using algebraic
relations. This leads to an amount of only two basic functions [19]. To order O(ε), we encounter
the following 14 harmonic sums:

{S1, S2, S3, S4, S−2,S−3,S−4}, S2,1, S−2,1, S−3,1, S2,1,1, S−2,1,1,

S−2,2, S3,1.

We can again group the first seven functions into the same class. Additionally, one finds that the
function S−2,2 depends onS−2,1 and S−3,1, and the harmonic sumS2,1 depends onS3,1, which
leaves us to orderε with only six basic harmonic sums, as also observed for a large variety of other
two–loop processes, cf. [20].

6. Conclusion

We have calculated the O(ε)–term of the unpolarized massive two–loop OMEs, contributing to
the heavy–flavour Wilson coefficients in the asymptotic limit Q2 ≫ m2, as a first step towards the
O(α3

s )–term of these Wilson coefficients. The calculation was done in Mellin space, where numeric
results were obtained by the use of Mellin–Barnes integrals, whereas analytic results were calcu-
lated using generalized hypergeometric functions. After applying algebraic relations, the analytic
result for the O(ε)–term is expressible in only six basic harmonic sums. The O(ε)–terms are the
first new terms contributing to the heavy flavour correctionsat O(α3

s ) through renormalization.
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