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1. Introduction

The era of LHC is now starting and with it some new questiomseasbout the possibility
of measuring the fundamental parameters of the Standarc&M8#1) with high precision. The
issue is particularly relevant for the top quark mass. Ttestalevatron analysis give = 1709+
1.8 [3], a measurement at 1% level whose precision affectsilgethe actual constraints on the
Higgs mass as well as many new physics scenarios.

The questions we want to address are the following: i) whaénkable is both sensitive to the
mass of the top quark and under good theoretical controlWliat is the theoretical framework
where we can systematically describe this observable wigh precision? iii) How precise is
our theoretical control over perturbative shifts to thekpeathe invariant mass distribution? iv)
And finally, using the invariant mass for a top-mass measenéhwhat is the most appropriate
(stable) mass definition to use, and how well can one reldiisdriass to other existing top-mass
definitions? The former 2 points were extensively discusedtie talk of A. Hoang [4] at this
meeting. The latter 2 are the focus of this proceedings, fockiva complete discussion is given in
ref. [6].

We concentrate oa*e~ — tt far from threshold, where the center-of-mass en&gys> n¢.
The theoretical framework is based on effective field theohke HQET and SCET [5], and has
been outlined in ref. [1, 2]. Here the top quark decay proslfiatm well separated collinear jets
together with soft-radiation among the jets. A thrust axde ©e defined and this axis define a
plane which divides the space in two hemispheres (that wéafahnd “b” hemispheres). A suit-
able observable is the event-shape cross-sedfiondM2dM2. HereM?Z = (Sic, pf')? andMZ =
(Siep pH')? are hemisphere invariant masses. The different physicpanents ofd?c/dM2dM2
can be separated by a factorization theorem derived in Rff. [
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In Eq. (1.1)0p is the tree level Born cross sectidtlg andHp, are hard-functions which encode the
perturbative corrections at the scat@andm, where from now on we usa for the mass of the top
quark. The invariant mass variablgesands are defined ag = & = Mtzr;mz F=3= Mtzr;mz , and
the most sensitive region for mass measurements is the pgahrwherest < 't + QAgcp/m.
Finally, By in EqQ. (1.1) are heavy-quark jet functions for the top quamkuark, ancsis the soft
function describing soft radiation between the jets. Ouimniacus here will be on the functions
B., which are defined in the heavy-quark limit > 'y using HQET [7, 8]. The soft functio®
is universal to massless and massive jets and a suitablel watbe found in Ref. [9], extending
earlier work in Ref. [10].

In this talk we take the first step toward next-to-next-tadiemg order (NNLO) for the invariant
mass spectrunt?c /dM?2d Mtg, by computing the top quark jet function at two-loop ordee &liso
give results for the resummation of large logs for this jetclion at next-to-next-to-leading log
order (NNLL). This translates into a resummation of all thek logs in the cross-section that can
modify the shape of the invariant mass distribution [1]. Wedduce a definition of the top jet-
mass scheme that has a well defined mass anomalous dimenaignarder in perturbation theory
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(unlike the definitions based on cutoff first moments or orkgeaations). In this jet-mass scheme
the quark-mass anomalous dimension is completely detedrig the cusp anomalous dimension
at any order in perturbation theory.

2. Theheavy quark jet function

The jet-functionsB.. for the top quark/top anti-quark are identical by chargejwgation, so
we will only refer to the computation d = B,. B is given by the imaginary part of a forward
scattering matrix elemenB(S,om, ¢, u) = Im[%(é, om, I't,u)] , where % are vacuum matrix
elements of a time-ordered product of fields and Wilson lines

‘%(ZVJF : r7 5m7 rt7 “):47.[Ncm
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Herevﬁ is the velocity of the heavy top quark, and we introduce matitorsn* andn” so that
we can decompose momenta@s= n“n-p/2+n#n-p/2+ p!. The vectors satisfy? = 1 and
n? = 2 = 0, and the definition of the Wilson lines in Eq. (2.1) is

W (x) = Pexp(ig Jo dsn-An(ns+ x)), Wh(x) = I5exp<— ig [ dsn- Ay(ns+ x)) . (2.2

These Wilson lines mak& gauge-invariant and encode the residual interactions fhamantitop
jet. The HQET fielddy,, have the leading order Lagrangian

% =hy, (iv+ .D—dm+ izrt) hy, . (2.3)

Herer; is the top quark total width, obtained from matching the dggay amplitudes in the stan-
dard model (or a new physics model) onto HQET at leading drddre electroweak interactions,
and at any order ims. The residual mass terdmin Eq. (2.3) fixes the definition of the top mass
m for the HQET computations [11], whefem = mpoe — M. From the definitions in Eq. (2.1) and
the Lagrangian in Eg. (2.3) one can deduce a series of prepett the jet function, which state
that it is easy to reconstru{(S,om, 'y, 1) from B($,0,0, it). In particular in% thes, dm, andrl'y
dependence formally occurs only in the combinatiéa 2dm+-il';). For this reason it is useful to
have a notation for computations done with a zero residuakrtexm in the Lagrangian, and with
zero-width. Thus we define

B(S,0m, i) = B(5,0m,0, 1), #(50m, 1) = #(5,0m,0,u),
B(S 1) =B(50,0,u), B u) =5(50.0,u). (2.4)
3. Non-Abelian exponentiation and jet-mass
It is possible to rewrite Eq. (2.1) as a matrix element of puikson lines,

BT 1) = s JdX Y™ B(x0) { 0tr T W (0)Wh (O (X)W, (x)| O) (3.1)



Two-loop Jet-Function and Jet-Mass for Top Quarks Ignazio Scimemi

where -r = §, we use the shorthand = v-x, and the trace tr is over color indices. The definition
of W, andW,/ is as in Eq. (2.2) wittn — v. Following the steps outlined in the original paper, [6],
also the Fourier transform of the jet function comes out a®dyzt of Wilson lines,

BIS 1) = 5, [y 7 Blp), Bk = o (Ol [TW(2We(2)] [TW OV (0)][0).
(3.2)

wherey = y—i0 to ensure convergence as- c. Due to the non-abelian exponentiation theo-
rem [12, 13],B(y, 1) exponentiates. Thus we can write the result of our two-loomutation
as [6]:

5 Ceas(y) (2, 2()G ~3 2 N
mB(y,lu)=eXp{%(’”<L2+L+2—"Z+1>+%{%L3+§L2+§—ZL—%+§—’;§+%]

a?(WCeCa | (1 72 5 m 5 \ir 5 1mt | 1@ 1
+ Sy A[(?s_l_z)l-+<E_1_2_73>L_T3_m+m_§1]}7 (3.3)

wherel = In (ie®ypu) . The non-abelian exponentiation theorem guarantees thegctions to
this result areZ(ad) in the exponent, and that these corrections vanish if wettakabelian limit
Ca — O andn¢ — 0. Since the exponent of the abelian result is one-loop ewactan use it to test
the perturbative behavior of different definitions of thp-tmass at any desired order in pertubation
theory. Choosing an appropriate top-mass definition cpomsds to choosing an appropriaken.

In ref.[6] we explored several possibilities and came tofthlewing definition, which we refer to
as the jet-mass scheme

d -~
== — B(y, i =e*
2B(y,p) dy Ok y=—ie /R

— InB(y, u .
din(iy) ( )iyeyEzl/R

R d ~
2

The scheme depends on a param&eand we must tak® ~ 'y in order to satisfy the power
counting criteria. Different choices fd& specify different schemes, and are analogous to the dif-
ference between the MS aMdS mass-schemes. The scheme in Eq. (3.4) is free from leading
renormalon ambiguities [14]. Let us now check that the mastefined has good transitivity prop-
erties. Transitivity is a well-known feature of théS mass, and implies that we will obtain the
same result if we evolve directly fromy — L, or if we first evolve fromug — 1 and then from

U — Up. Transitivity is guaranteed by any mass-scheme with a sterdi anomalous dimension
and renormalization group equation. Since in HQET the sodkependent®®'® = m(u) +om(u),

the general form for the RGE equation for the mass is

) = R0, (). Yo = — L Sm(3) (3.4)

whereR is a mass dimension-1 scheme parameter. To all orders iarpation theory, using
Eq. (3.4), the jet-mass anomalous dimension is [6]

_domu) R d d o I
o= G~ 2 dng dingy) "BV e RMas(u)].  (3.5)
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mB jet-mass scheme
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Figure 1: The jet functionmB(§, dmy, Iy, Ua, tr) versusMy, wheres= (MZ —m?)/mandly = 1.43GeV,
andR = 0.8GeV. The black dotted curve is the tree-level Breit-Wigtiee green short-dashed curves are
LL results, blue long-dashed curves are NLL, and the soliccteves are at NNLL order. For each order we
show three curves witpir = 3.3,5.0,7.5GeV respectively. Other parameter choices are discuadé{l i

Thus, to all orders in perturbation theory the jet-mass mehdas a consistent anomalous dimen-
sion as in Eq. (3.4), and yields a transitive running mag$p). The final anomalous dimension
equation for the jet-mass is fully determined by the cuspraaious dimensioh®, which is known

to three-loop order [15]. Note that the form of the anomaldusension inud/du [m;(u)/R] has
the same structure as thatginl /du [Inm(u)], wherem(u) is theMS mass.

4. Resultsfor the NNLL Jet Function

In this section we discuss the final result for the heavy qyerkunction B(S dm, i, ),
with NNLO perturbative corrections and a NNLL resummatidriasge logs. We have studied
the numerical effect of these two-loop corrections as webfahe log-resummation, including the
perturbative convergence apedependence @ as a function o§."At tree-levelB(S,om, i) = 4(9)
andB(§,dm, "¢, 1) is simply a Breit-Wigner centered at="0 with a widthl';. Beyond tree-level
the jet function becomes dependent prand on the choice of mass-scheme throdgh For
the cross-section?a /dM2d I\/l§ in Eq. (1.1) it has been proved that at any order in pertushati
theory, the only large logs that effect the shape of the iamarmass distribution are those due
to the resummation in the heavy-quark jet function [2]. Rertore these large logs only exist
between scalegr ~ I' =t + QAgcp/Mandpua 2 Agep+ My /Q. The remaining large logs only
modify the cross-section normalization. The expressioiciveums all logs between the scales

HQ ~ Q> pm=~=m>> lr ~T > lip Z Nqcp IS
d?o
dMdMr
+oo B R Qg—i— . Qi _ ~
X /—oongr d¢ B+ (& - TJ75mJ7rtal~1/\al~1F>B— <$_ WjuémJart7“/\7“r)S(£+ag 7“/\757A(I‘l/\)) )

:400Mt MFHQ(Q> “Q)UHQ(Qa Hg, Um)Hm(mJa “m)UHm(Q/va Hm, IJ/\) (41)

where we have defined the resummed jet function as

B(§75m.]7rt7u/\7ur) = fdél UB(é_ gaIJ/\aIJF) B(§75m.]7rt7ur)° (42)
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Since the scalegr and ua differ by a factor ofQ/m>> 1 it is necessary to sum the large logs
between these scales. In Egs. (4.1,4.2) large logs are nesdry the evolution factotsy,, Uy,
andUg, and of these, the first two only affect the overall normaima The numerical importance
of the resummation of all large logs was demonstrated at Nideioin Ref. [2].

In fig.1 we the plot LL, NLL, and NNLL results for the jet funoti. We observe that the
jet-mass scheme results exhibit good perturbative coamerywith a stable peak location for the
jet-function. In the jet-mass scheme the scale dependentteeislope before the peak4s6%
at NLL and~ 2% at NNLL, while the maximum variation near the peak is 14%lBL and 7%
at NNLL, and then in the tail above the peak itNs12% at NLL and~ 5% at NNLL. Thus, in
the jet-mass scheme thg dependence is reduced by a factor of two or more. The samledive
improvement is also observed for different mass-schemenpetersR than the one shown.
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