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1. Introduction

In this talk | would like to describe some remarkable progrémat has been made in the past
few years in understanding the structure of gauge bosotesogtamplitudes in a particular gauge
theory, /" = 4 super-Yang-Mills theory. While this theory differs in nyadetails from the elec-
troweak and QCD theories whose radiative corrections werestibject of this symposium, there
are many common issues, particularly associated withriedratructure. Indeed, the understanding
of infrared divergences in QCD acquired over the last fewades has proved extremely useful in
unraveling some of the structure .of" = 4 super-Yang-Mills theory.

A = 4 super-Yang-Mills theory is the most supersymmetric thgumssible without gravity.

In the free theory, starting from the helicityl massless gauge boson (“gluon”) state, the four su-
percharges can be used to lower the helicity by%tl: 2 units, until the helicity—1 gluon state is
reached. If one had more supercharges, one would need-spstates, and it is not known how to
guantize such theories in a unitary way without includinggast spin 2 gravitons. Along the way
from the helicity+1 to the helicity—1 gluon state, one passes through the 4 massless (Majorana)
spin 1/2 gluinos, and 6 real (or 3 complex) massless spin 0 scalarthid maximally supersym-
metric Yang-Mills theory (MSYM), all the massless states iarthe adjoint representation of the
gauge group, which we will take to &) (N;). The interactions are all uniquely specified by the
choice of gauge group, and one dimensionless gauge couplifipe theory is an exactly scale-
invariant, conformal field theory; that is, the beta funati@nishes identically for all values of the
coupling [1].

Here we will consider the 't Hooft limit of MSYM, in which theumber of colord\; — oo,
with the 't Hooft parameted = ¢?N. held fixed [2]. In this limit, only planar Feynman dia-
grams contribute. Also, the anti-de Sitter space / confoifield theory (AdS/CFT) duality [3]
suggests that foN. — o the weak-coupling perturbation seriesAinmight have some very spe-
cial properties. The reason is that, according to AdS/CIRE strongly-coupled (larg&) limit of
the four-dimensional conformal gauge theory has an egenvalescription in terms of a weakly-
coupled string theory. The intuition is that the pertunbatseries should know about this simple
strong-coupling limit, and organize itself accordingly.[4

Figure 1 sketches how events such as gluon scattering labk ldS/CFT duality [3, 5]. Five-
dimensional anti-de Sitter space, Ad®ontains, besides the usual four-dimensional space-time
R'3, an additional radial variable which corresponds to a resolution scale in the four-dirioeras
theory. Large values afcorrespond to the ultraviolet (UV) region; small valuedieinfrared (IR).
The figure shows a “big” glueball state in the IR, and a “smgliieball state in the UV. The arrows
represent the motion of plane-wave single gluon stat&&-ifor gg — gg scattering at 90 We'll
discuss the motion in later. The radius of curvature of A¢$s proportional toA /4. LargeA
means that the space-time is only weakly curved, which miakesch simpler to study the string
theory; higher excitations of the string can usually be eegd.

The AdS/CFT duality is a weak/strong duality. Quantitieatthan be computed at weak
coupling in one picture have a strong-coupling descripitiche other picture. This property makes
AdS/CFT both powerful and difficult to check explicitly — tiugh there is certainly convincing
evidence in its favor. There are a few quantities that arevkngmodulo a few assumptions) to
all orders inA; that is, for which one can interpolate all the way from wealstrong coupling.
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Figure1: Cartoon of the AdS/CFT duality.

Notable among these is the cusp (or soft) anomalous dimepgid ). The QCD version of this
quantity crops up a lot in soft-gluon resummation. Beiseden and Staudacher [6] have given
an all-orders proposal fax (A), based on integrability, plus a number of other propertiEseir
proposal is consistent with the first four loops in the wealgting expansion [7, 8], and also
agrees [9, 10] with the first three terms in the strong-cagpéxpansion [11, 12, 13].

In this talk | would like to discuss the evidence for anothepmsal [14], namely that gluon-
gluon scatteringgg — gg in MSYM, for any scattering angl@ can be fully specified by just three
functions ofA, independent o8. One of these three functions is already “known”, becauge it
justy, (A). This proposal has received some confirmation at stronglicguphrough the work of
Alday and Maldacena [5]. It was motivated by the structuréRoflivergences in gauge theory.

2. Infrared divergences

In a conformal field theory, scale invariance implies thatititeractions never shut off, so that
a scattering process cannot really be defined. While strsgieaking this is true, we are able to
get around it in practice by regulating the theory in the IRR’NMse dimensional regularization
with D =4 — 2¢ ande < 0 (actually a version of it that preserves all the supersymnj&5]). The
regulator breaks the conformal invariance, but we can rdbby performing a Laurent expansion
arounde = 0, up to and including the'(e°) terms.

At one loop, there are two types of IR divergencssft-gluon exchange, in which the virtual
gluon energyw — 0; andcollinear regions, in which the gluon’s transverse momentum (with
respect to a massless external likg)— 0. The soft and collinear regions each produc¢afdole,
resulting in a 12 leading behavior for on-shell amplitudes at one loop.LAbops, the leading
behavior is Y%, coming from multiple soft-gluon exchange that is arranpesarchically, so
that the outermost gluons are softer and more collinearttih@mnermost ones.

In fact, all the pole terms fdc-loop amplitudes are predictable in planar gauge theoanks
to decades of work on the soft/collinear factorization arpomentiation of amplitudes, and of
quark and gluon form factors, in QCD [16, 17, 18, 19, 20, 24 Iboth QCD and MSYM, in the
planar limit the pole terms are given in terms of three qui@stiin the notation of refs. [19, 21]):
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Figure 2: Factorization of soft and collinear singularities.

e the beta functiorB(A) (but of course this vanishes in MSYM),
e the cusp anomalous dimensigp(A ),
e a“collinear” anomalous dimensidB,(A).

The cusp anomalous dimension gets its hame because it ag@@ar23, 24] in the renor-
malization group equation for the expectation value of es@illineW(p, g) for two semi-infinite
straight lines, joined at a kink or cusp:

<P§%+1%®£%>mm“ﬂg%:—ﬂkM)mpz+ﬁUPL (2.1)

wherep? = n, -n,/(,/n2n3) — o as the two straight lines become light-like,nZ — 0. The
cusp anomalous dimension also controls [18] the univefialof independent) large-spin limit
of anomalous dimensionﬁ of leading-twist operators with spifn such as the quark operators

O, EQ(H@JF)jq:
1 o .
i=5%M)nj+0(i%,  joe (2.2)

Finally, through a Mellin transform of eq. (2.2} (A) appears in the largelimit of the DGLAP
kernel for evolving the parton distributions,
1 ()

T @3

Thus, in the study of QCD at colliders it is an important gitsirfor resumming the effects of soft
gluon emission.

The general infrared structure of massless gauge amditcaie be exposed [17, 20, 21] by
factoring off soft singularities, which arise from longstiince gluon exchange, and collinear sin-
gularities, which are also at long distances, but only oah@lthe axis of a hard parton. This
space-time picture is shown in fig. 2. Defining, to be the full amplitude«, divided by the tree
amplitude"®® the factorization formula reads,

M= SR} 1.E) % ﬁaim,u,s) < (k1) 2.4)
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Figure 3: Soft-collinear factorization in the planar limit.

wherep is the factorization scale, atg is the hard remainder function, and is finitesas> 0. The
soft functionSonly sees the classical color charge of figarticle. In general it is a complicated
matrix acting on the possible color configurationstigrbecause soft gluons can attach to any pair
of external partons. The jet functiahis color-diagonal, but depends on tfespin. Terms that
are color-diagonal and spin-independent can be movedanilyitbetweenSandJ,.

In the largeN. planar limit, the picture simplifies, to that shown in fig. 3eddM represents
the coefficient of a particular color structurejTif2 T2 --- T#]. Now soft gluons can only connect
adjacent external partons; and indeed there is no mixingfierent color structures at largs..
Because of the color-triviality of the planar limit, one calpsorb the entire soft functid@into jet
functions, or break up the right-hand side of fig. 3 intwedges. Each wedge represents the square
root of the Sudakov form factor, the amplitud&!—9%! for a color-singlet state “1” to decay to a
pair of partons, say gluons. Hence the planar version of2ed) (s

n ) 1/2
=] [///[hgg] (%,as, gﬂ X ha({k }, 14,05 (2.5)

The only dependence of the singular terms on the kinemati¢srough the momentum scale,
S.1 = (k +k4)?, entering the™ Sudakov form factor.

Factorization also implies that the Sudakov form factorysbe differential equation in the
momentum scale [16, 24, 18, 19],

17} 1
[1—gg] 2/,,2 _ = 27,2
In Q2 In% (Q /I"l 70578) 2 |:K(£7as) + G(Q /U 70578)] . (26)
HereK(g,as) is a pure counterterm, or series ofelpoles. By analogy with th®-dimensional
B-function, B(&, as), the single poles (related 4§ ) determineK completely. The functiors is
finite ase — 0, but contains all th&? dependence; it will generate a single pole inAf'—%
upon integrating eq. (2.6) with respect@. The functionsK andG obey renormalization group

equations,
7} 17} 17} 17}
(w3 +85)K =~ (g +Bg )= &0

The collinear anomalous dimensi@j(A) arises as a constant of integration for the differential
equation forG.

Solving the differential equations fét, G and the Sudakov form factor is particularly easy in
a conformal theory because the four-dimensional couplogsdot run. Doing this, and inserting
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the form-factor solution into eq. (2.5) for tlmepoint amplitude, we obtain [14],

M(e) = 1+ 5 dMP(e)

1 ((ﬁ:’l;z " 2|(:;88)> i_il<—;i2+1>|£] xhn({k}), (2.8)

= _~ = —Vc"::_
a= 21 (47e) 8n2(

is the loop expansion parameter in the 't Hooft limit, gijd andééI> are thd -loop coefficients of
¥k (@) andGy(a).

The argument of the exponential in eqg. (2.8) looks very mikghthe one-loop amplitude, but
with ¢ replaced by €, denoted bWIr(]l)(I €). Thus we are motivated to rewrite eq. (2.8) as

I

)
pd
5=

|
@l -
D

where
4meY)® (2.9)

4%&):em{i@(WN@MQKwy+mGKH+ﬁ@D}, (2.10)

wheref()(g) = f(ll + e f(l) +£2f{l collects three series of constants. Two of these are idehtif
with the previous quantities as,

1. | A
fyzzw, fpzé%m (2.11)

while the third quantityf{!, is related to the consistency of eq. (2.10) under collifieits [4].

3. A surprising relation

The surprise in planar MSYM is that in some cases the hard ingteafunctionh,({k;})
defined through eq. (2.10) is actually a constant, indep#rafehe kinematics. This result, which
has been tested perturbatively foe 4 through three loops [4, 14], and foe= 5 at two loops [25],
is a conjecture beyond that:

Mo = exp[i a (f(”(s)M,(]l)(ls) +c 4 ﬁ(s))} . (3.1)
=

The dependence of the finite part of the logarithm of the anomidi is predicted to all orders by
eg. (3.1), in terms of the cusp anomalous dimension. Theagtiewl for four-gluon scattering is

e — exp[%yK(a) In? (?) + const] , (3.2)

wheres =s;,, t = s,5. As we shall discuss in section 9, this formula was confirmestrang
coupling by Alday and Maldacena [5] using the AdS/CFT cqgraeslence [3]. In contrast, even at
two loops there does not appear to be any comparably simpieufa for the finite parts of four-
gluon scattering amplitudes in QCD, or for the subleadmfi terms in MSYM [4]. Instead of a
constant, as in eq. (3.1), one finds th&ﬁ in eg. (2.10) is given by a complicated combination of
polylogarithms involving the dimensionless ratjts. On the other hand, eq. (3.1) is reminiscent
of the observation [26] that finite terms can also expon&ni@QCD, ine.g. the Drell-Yan cross
section near partonic threshold.
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Figure4: Example of generalized unitarity at three loops.
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Figure5: Integrals contributing to four-gluon scattering in plaM8YM, from one to four loops.

4. Evidence

The evidence in favor of eq. (3.1) was collected from explemmputations of the multi-
loop scattering amplitudes. The amplitudes were congiduby evaluating (generalized) unitarity
cuts [27, 28, 29, 30, 31, 32] and matching them to compacesamtations in terms of a relatively
small number of multi-loop integrals, which turn out to has#her interesting properties. Ordinary
unitarity relates discontinuities (cuts) in a given chdmioeproducts of lower-loop amplitudes,
summed over the possible intermediate states in that cha@®neralized unitarity allows the
lower-loop amplitudes to be further sliced, all the way dawriree amplitudes. Figure 4 shows
an ordinary three-particle cut for the four-gluon ampléudThe information in this cut can be
extracted more easily by further cutting the one-loop fiegpamplitude on the right-hand side
of the cut, decomposing it into the product of a four-poieetand a five-point tree; as illustrated,
there are three inequivalent ways to do this. If one finds sesgmtation of the amplitude that
reproduces all the generalized cuts@imimensions), then that representation is correct.

Figure 5 shows the integrals that enter the four-gluon egatf amplitude in planar MSYM,
from one to four loops [33, 7], along with their numeratortéas. An overall factor oft is omitted
from the rescaled amplitude?,(s,t), and only one permutation of each integral is shown. At one
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Figure 6: The two-loop planar double box integral (in orange) and éssed dual graph (in blue).

and two loops, only scalar integrals appear; that is, theanatar factors in the integrand depend
only on the external momentum invariants. At three loopstdlare two integrals, the scalar triple
ladder integral and the “tennis-court” integral shown &t tbp right of fig. 5. The latter integral
marks the first appearance of a loop-momentum factor in theenator, of the forn{l; + Ij)z, as
dictated by the “rung rule” [33]. The rung-rule correctlysgebes all integral topologies that can
be reduced to trees by a sequence of two-particle cuts. Aldops, the last two integrals in fig. 5
have no two-particle cuts, and are somewhat more work tardete. At five loops (not shown)
there are a total of 34 distinct integrals [34]. Still, it @markable that so few integrals are required
to describe the amplitude.

5. Pseudo-conformal integrals

In fact, the integrals that appear in the four-point ampkttwhrough five loops are giseudo-
conformal. To describe what this means [35], first consider takingledl éxternal legs off shell,
k? # 0, in order to be able to perform the integral without dimenal regularization, iD = 4.
Next define dual momentum or sector variabtgssuch that the original momentum variables
are differences of the, with klﬂ = xlﬁjrl —xi“. Similarly define arx, associated with each loop, such
thatxij =% —X is equal to the momentum flowing through the propagator thpasites; from
X;. Figure 6 illustrates the dual diagram (in blue) associatéi the planar double box integral
(in orange) which appears in the two-loop MSYM amplitudee Qual propagators (denominator
factors) are shown as solid blue lines, while dashed bluss lgorrespond to numerator factors in
the integrand. The integral is given by

. 4 4
1@({k}) = szt/ . . zdzpd a_ . , (B.1)
PZ(P—Kp)?(Pp— kg — Ky)?a?(d—Ky)?(d— k3 — Ky)?(p+ 1)
. d4X5 d4X6
= (43)%4 / : (5.2)
Xe5XX55X56% 56X
usings = (k; +k,)? = x5, p?> = X35, and so forth.
Under an inversion! — xi”/x,?, we have
2 4 4
2 Xij 4 d™s 4 d™s
L d™%: — —=, d™%; — —5— (5.3)
e TR T TR T g

and it is easy to see that eq. (5.2) is left invariant. In galnan integral is invariant under inversion
if there is a net of zero (four) lines emerging from each exe(internal)x; vertex, where “net”
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means solid lines minus dashed lines. Every integral isnaatically invariant under translations
of the dual variablesg, — x; + ¢, and under Lorentz transformations. Because these tramafo
tions, together with inversions, generate the conformaligy invariance under inversion suffices
to guarantee dual conformal invariance for the integralwNee can define a pseudo-conformal
integral to be one which is finite iD = 4, after all theki2 are taken off-shell, is dual conformal
invariant, and possesses a smokﬁh—> 0 limit. The last condition ensures that the integral does
not become infinite or vanish as we return to the on-sheltlimi

Dual conformal symmetry arose in the context of multi-loegdder integrals [36], and in two
dimensions in the theory of (planar) Reggeon interactidW.[ Its relevance for the structure
of MSYM amplitudes was first pointed out by Drummond, Henn,if8ov and Sokatchev [35],
based on the structure of the amplitudes through three Jaops the rung-rule contributions at
four loops. The four- and five-loop four-gluon amplitudes te organized as well, according to
the two principles:

¢ Only pseudo-conformal integrals appear.

e The pseudo-conformal integrals appear only with weight

Originally it appeared that two integrals at four loops [Apa25 integrals at five loops [34] were
pseudo-conformal but didot appear in the amplitude. However, it was later pointed catt tthose
integrals were not actually finite D = 4 [38]. Recently, some intuition into the sigad has been
given by considering the singularity structure of the vasiintegrals more carefully [39].

6. Evaluating integrals

Once the structure of the amplitude is known in terms of bagiegrals, the next task is
to evaluate those integrals, analytically if possible,eoffise numerically. For example, to test
eg. (3.1) at three loops, we first expand it out to third ordbtaining the iterative relation,

1 3
MP(e) = —3 [M,@(s)} +MP(eMP () + F@(e)MP (3e) +CO + 0(e).  (6.1)
To test this relation at orde for n= 4 [14], we need the following integrals:
e The one-loop box integral througtf — because it has/E? poles, and appears cubed in
eq. (6.1).

e The planar double box integral [40] in fig. 6 through — becauseM/? (¢) appears in
eq. (6.1) multiplied bV (¢).

e The triple ladder [41] and tennis-court [14] integrals b £°.

Mellin-Barnes techniques (seqy. ref. [42]) are very useful in this regard. Inserting the Hssunto
eqg. (6.1), and using identities among weight 6 harmoniclpghrithms [43], the relation (6.1) was
verified, and three of the four constants at three loops dosllelxtracted:

11
(9 =T 1=60+500 ¥ =cl+0(G) (6.2)
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Figure 7: (a) Mapping a single-trace operator to a spin chain. (b) @op-contribution to the anomalous
dimension matrix at largh..

The first two of these constants control infrared divergend@e value off (3 = 3 /4 confirms a
result for the three-loop cusp anomalous dimension in plEt&Y M, which was first obtained [44]
by applying the principle of “maximal transcendentalitg’the corresponding result in QCD [45].
The value off{3 = (3/2)G®) gives the three-loop collinear anomalous dimension, whieis
found to agree (applying the same principle) with the QCIitdé6]. The constants3 andC®
are inseparable using only the four-gluon amplitude; eithe five-gluon amplitude or a collinear
analysis would be required to separate them. The nunthensdc, are expected to be rational.

A similar analysis can be performed at four loops [7, 8, 4X{ept that the integrals become
less tractable analytically. Fortunately, there are nadhavailable for automating the construction
of Mellin-Barnes representations [48], the extraction of poles, and the setting up of numerical
integration over multiple contours for the Mellin invermsip49, 50]. Before describing the four-
loop results, let us turn to some very interesting develagméhat have taken place, based on
integrability.

7. Integrability and anomalous dimensions

In largeN; gauge theory, a preferred role is played by local “singhedroperators”. In the
case of MSYM, one subsector of such operators is providedrdguets of the 3 complex scalar
fields, X;, i = 1,2,3. The operator TK{] is a so-called BPS operator, and is unrenormalized to
all orders inA. A set of operators with more interesting renormalizatioaperties are close to
BPS [51], and contailX, fields as well a;, for example,

Trl . XXX X Xy - ] (7.1)

As shown in fig. 7(a), this set of operators can be mapped te-aonensional, periodic spin chain,
inwhich X; (X,) is mapped to spin up (spin down), corresponding to a finiteedsional (spin 1/2)
representation dJ (2) spin symmetry.

The anomalous dimensions of the set of operators (7.1) arelfby diagonalizing the dilata-
tion operator, which can be mapped to a Hamiltonian for the slpain. In the largeN. limit, this
Hamiltonian is local, because non-local interactions espond to non-planar diagrams. For ex-
ample, as shown in fig. 7(b), a one-loop contribution fromwrfecalar interaction can only affect
color-adjacentX; fields (spins). (The range of the interactions does increasethe number of

10
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loops.) Minahan and Zarembo [52] showed that the one-loapildanian wasintegrable; that is,
the system possesses

e infinitely many conserved charges,

e a spectrum of quasi-particles (spin waves, or magnons),

e magnon scattering via a-2 2 Smatrix obeying the Yang-Baxter equation,
¢ solutions for the anomalous dimensions (energies) via heBatsatz.

Integrable structures in QCD had been identified previo[&8y 54, 55]. In planar MSYM, how-
ever, the integrability appears to persist to all orders;imdeed, it is known to be present at strong
coupling, from the form of the classical sigma model on taspace Adg x S [56].

There is a rich literature of extensions of the one-loop ltesuf ref. [52] to higher loops,
even all loop orders, and to more general sectors of planayM|Svhich | can only touch on
here [6, 57, 58, 59, 60]. The sector most relevant to gluotiestag amplitudes is not the spin 1/2
U (2) sector (7.1), but that in which thé, fields are replaced by covariant derivatives acting
in the + (light-cone) direction,

Trl... 279X XX, ... (7.2)

These derivatives act as an infinite-dimensional repraientof the noncompact version 8f (2),
namelySL(2). Within this sector, the cusp anomalous dimension can bedfday taking the limit
of a small number of fields (spin chain lengih)and a large number of derivativgsto get the
operator

0= Tr[Xl(@ﬂJXl], j — oo, (7.3)

By the universality of the cusp anomalous dimension, it da#smatter which leading-twist large
j operator is used; they all have the behavior (2.2) at large

8. An all-orders proposal

In brief, and omitting many subtleties, the Bethe-ansalatem consists of taking the eigen-
states of the Hamiltonian to be multi-magnon states, witlispkshifts induced by repeated-22
scatterings. The periodicity of the wave function on thesetbchain leads to the Bethe condition,
which depends on the chain lendthin the limitL — o, the Bethe condition becomes an integral
equation, which depends on the form of the=2 magnonS matrix [60]. ThisS matrix isalmost
fixed by the symmetries, but an overall phase,diessing factor, is not so easily deduced. Finally,
there is a potentialrapping problem in extrapolating to the cusp anomalous dimension: The Bethe
ansatz is only rigorously valid when the interaction rarthe umber of loops) is smaller than the
chain periodicityL. However, even though the cusp anomalous dimensior.kag, it has been
argued that its universality leads it to appear within latgeectors, and renders it immune to the
wrapping problem [55, 60, 61].

Eden and Staudacher [60] derived an integral equation @&allhorders behavior of the cusp
anomalous dimension from an all-loop Bethe ansatz [58],dsyiming that the dressing factor did

11
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not play a role perturbatively. This equation agreed with khown one-, two-, and three-loop
coefficients ofy (A ), and made the four-loop prediction,

(4) — \/ 4) — n6 2 _ 4 4

motivating the computation of the four-loop four-gluon tseeng amplitude, and the numerical
extraction offé“) from it. The result found [7],

f{4 = —20.335+0.052 (8.2)
and later with much improved precision [8],

f{4 = —29.29473+ 0.00005 (8.3)

was consistent, not with eq. (8.1), but with a version in \atilee sign of thQZ3)2 term was flipped,

1 73
f(4)‘ _ Iy 4>‘ — 12 g6 (2.)%=—-292947071202. .. 8.4
0 |BEs 4y'(< BES 2520 (&) (8.4)

Remarkably, the latter value was predicted, simultangownih ref. [7], by Beisert, Eden and
Staudacher (BES) [6], based on a modified integral equadikimg into account a new proposal
for the dressing factor, with nontrivial effects beginniagfour loops. The proposed dressing
factor was deduced by using its properties at strong-cogphvhere it had been known to be
nontrivial [62]. Perhaps even more remarkably, the onlgafof including the dressing-factor
term on the weak-coupling expansion of the integral eqoat®oto make the substitutiody, . ;, —

i {51, Which affects only the signs of the odd-zeta terms in théupeative expansion. At five
loops, this sign-flip is

f

éS)‘ES — (887/567007° — 20, ({3)* — 10435 = 13121... (8.5)

o f(g5>(BEs — (887/56700 78 + 27, (5)%+ 107, = 16565... (8.6)

which also agrees with interpolation-based estimates [7].

The BES integral equation was solved numerically [9], anerlaxpanded analytically to all
orders in the strong-coupling (3/A) expansion [10]. Its strong-coupling behavior is consitte
with the known first three terms in this expansion [11, 12, T3jis concordance, plus the agree-
ment with the first four loops at weak coupling, strongly sestg that the BES equation is an exact
solution for the cusp anomalous dimension, valid for aalpjti .

The next quantity appearing in the planar MSYM gluon scatgeamplitudesG,(A ), which
controls single poles in the argument of the exponentiabin(2.10), is not quite as well known.
The first four loop coefficients are known, the fourth numahc[47],

4

AN\ 2 A0\ A
GO()\):—Z3<w> +§(6Z5+58253)<ﬁ> —(77.56i0.02)<w> +o, (87)

and one coefficient is now known in the strong-coupling esan[5]. A Padé approximant in-
corporating this data has been constructed [47]. Cleanyould be of great interest if an integral
equation could be found governii@(A ) for all values of the coupling. Finding a cleaner operator
interpretation for this quantity may be quite useful in ttéspect.

12
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r~ g2 12

D brane rIR

Figure 8: Gluon scattering in anti-de Sitter space. Four-dimensispace-time has coordinates Hard-
scattering kinematics force the strings to stretch a lostpdice in the radial directian from their infrared
“anchor”, aD brane located at.

9. Gluon scattering at strong coupling

Now let us return to the picture of gluon scattering at strongpling developed by Alday
and Maldacena [5]. Figure 8 is another view of the AdS spaet¢chkd in fig. 1, showing also
a pair of incoming open string states prior to a hard scageriThe ends of the open strings are
anchored on & brane, which serves as an infrared regulator and is locdatadsmall value of
the AdS radial variabler ;. The short-distance (UV) nature of the hard scatteringe®ngart of
the string to penetrate to large valuesref /s, v/t. Gluons correspond to this part of the string,
and the rest of the string can be thought of as the color stiglpion has to drag along with it,
which is particularly important at strong coupling. Beoatise string has to stretch a long way, the
scattering is semi-classical [5].

This regime is similar to very high-energy, fixed-angle waratg in string theory in flat space-
time, which was studied long ago [63]. Evaluated on the @aksolution, for the case of color-
ordered scattering with gluons 1 and 3 incoming, 2 and 4 dodggdhe string world-sheet action
is imaginary. The Euclidean action, or area, is real, andgaiithmically divergent, leading to a
large exponential suppression [5],

My~ expliSy] ~ exp—SG] ~ exp— VA In?(r /)], (9.1)

wherer ~ /s, /t. The coupling-constant dependence in eq. (9.1) origirfaves the formula for
the radius of curvature of AdRZ,s = VA, which enters the world-sheet action. From the string
point of view, the suppression can be attributed to a tumgeiuppression factor. From the point of
view of a four-dimensional collider physicist, it is a typlcSudakov suppression factor [16]: The
probability for a pair of gluons to make it all the way into aback out of the scattering without
radiating at all is exponentially small — especially at sg@oupling,A — co — with a double log

in the exponential.

To make contact with the perturbative results, Alday anddde¢éna constructed a dimension-
ally-regularized version of AdSx S, instead of using th® brane locatiorr|; as a regulator.
They also introduced -dual variablesy# in place of the usual four-dimensional coordinates.
The T-duality transformation is a kind of Fourier transform, e y* are like momentum vari-
ables. Indeed, the asymptotic boundary value for the wahlekt, which resides at= 0 in the

13
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(b)

Figure 9: (a) Boundary condition at = 0 for gg — gg scattering at 90in the u-channel. (b) The cusp
solution, showing as a function of® andyY.

Figure 10: Planar Feynman diagrams, ringed by the strong-couplingd@y condition in dual momentum
variables. Each Sudakov wedge has a single cusp asso@ated t

dimensionally-regularized setup, is a polygon constdiftem light-like segments ig“, with the
corners/i“ satisfying

Y Y =K 9.2)

whereklﬁ‘ is the momentum of thi" gluon. From eq. (9.2), we see that theoincide precisely with
the dual variableg; introduced in section 5 to discuss dual conformal invagrtégure 9(a) shows
the light-like quadrilateral boundary satisfying eq. {¥@ the case of 2- 2 gluon scattering at
9(r in the 1-2 plane, with,; andk; incoming. The vertical direction is the (dualized) timeadition.
Near each corner of the polygonal boundary, the solutiont ook like a cusp solution, pre-
viously constructed by Kruczenski [64], in whichbehaves like = \/(2+€)[(y2)2 — (YI')?] =
(2+ &)y*+y- for some spatial coordinaig’, and light-cone coordinatgs™. This hyperboloid is
shown in fig. 9(b). The classical action (area) for this soluhas a divergence regulated &y

_ dytdy~ 1VA 1y (A
Sy =-S5 — —szxds/oW T Te2om T e K(z g ®-3)

The coefficient of the leading divergence is just the stroogpling limit of the cusp anomalous

14
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dimension [11],

Y (A) ~ \/—r?—’ asA — o, (9.4)
Figure 10 illustrates the situation heuristically. Thegsilar part of the planar amplitude can be
broken up into Sudakov wedges, as in fig. 3 and eq. (2.5). Tkdagmv of soft and collinear di-
vergences corresponds to regions between two hard legesk andk_ .. Thus each wedge is
associated with a single divergent cusp [65], of the formnshim fig. 9(b).
The full classical solution, for arbitrary scattering amgas found by Alday and Malda-
cena [5]. Its action gives a strong-coupling amplitude effibrm,

My = exp—Si],
- -22](8) " ()] Bpeeal(8) (%))
+8A_7T[In2<§> +é} T, (9.5)

whereu?, = 4re~Y 2. This expression can be compared with the strong-couphtrggolation of
the ansatz (3.1) [5]. The/x? poles agree, using the strong-coupling valueyfgnl ) from eq. (9.4).
The 1/¢ poles give the strong-coupling limit of the collinear andows dimensiorGy(A ),

Gy(A) N\FAL;:Z),

The finite part of.#, has a dependence smandt which is precisely as predicted by eq. (3.2).

asA — oo, (9.6)

10. Dual variables and Wilson loops at weak coupling

The dual momentum variablexlg play a prominent role in the strong-coupling computation of
Alday and Maldacena, which is essentially the same as cangpatWilson loop vacuum expec-
tation value at strong coupling. Inspired by this connextibhere has been a sequence of recent
Wilson-loop computations for loops corresponding to thaldnomentum boundary conditions
for ann-point amplitude, namely polygons composeddight-like segments, with corners obey-
ing eq. (9.2).

The first of these computations was by Drummond, KorchemsklySokatchev [38], for the
one-loop expectation value of a quadrilaterai4) Wilson loop. Up to constants of the kinemat-
ics, attributable to a different regulator (in the UV) thae bne used for the amplitudes (in the IR),
the expectation value agreed, surprisingly, with the aog-four-gluon amplitude, normalized by
the tree amplitudei.e. eq. (3.2). Next, Brandhuber, Heslop and Travaglini [66]vebd that the
same statement is actually true for thgon Wilson loop for any, compared with the normalized
one-loop amplitude [28] for the so-called maximally-h#ieviolating (MHV) configuration of
gluon helicities (two negative anh— 2) positive). The Wilson-loop computation knows nothing
about the polarizations of the external gluons. It is mastifesymmetric under cyclic permutations
and reflections of the polygon. For= 4 and 5, a Ward identity fory” = 4 supersymmetry shows
that all helicity configurations in MSYM are equivalent, aifét the normalized amplitudes have
the same manifest symmetries as the polygonal Wilson lotp fgowever, beyond = 5 there are

15
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non-MHV configurations which do not have these symmetriesy ioes the Wilson loop know it
is “supposed to” match the MHV amplitude alone?

Drummond, Henn, Korchemsky and Sokatchev (DHKS) then tepehe Wilson-loop com-
putation in MSYM at two loops, first for tha = 4 case [68] and thénfor then = 5 case [69].
Again the results matched the full two-loop MSYM scatterargplitudes [4, 25], up to constants
of the kinematics. Furthermore, DHKS first proposed [68] #meh proved [69] an anomalous
dual conformal Ward identity for Wilson loops, in which thecemaly arises from UV divergences
proportional toy, (A ). The solution to the Ward identity is unique flor= 4 and 5. Beyonah = 5,
there are multiple solutions, due to the existence of ndatrconformally-invariant cross ratios.
For example, fon = 6 the quantity; = X3,X35/ (X2,X36) = 12545/ (S1235345) IS invariant under the
inversion (5.3), and there are two other such cross ratidse &ppearance oxﬁi 1= k? in a cross
ratio is forbidden by the on-shell constrakft=0.)

DHKS also showed that the amplitude ansatz (3.1) obeys talous dual conformal Ward
identity. Given that the ansatz was known to be correctfer4 and 5 [4, 25], and the uniqueness of
the Ward identity solution for these cases, this resultdexplain why the amplitude should match
the Wilson loop in these cases. However, it was not clear wiatild happen for larger. Indeed,
Alday and Maldacena [70] gave an argument, based on appatirigna Euclidean rectangular
loop by a zig-zag configuration composed of many light-likgraents, that the ansatz (3.1) should
fail at strong coupling for sufficiently large. DHKS [71] found that the hexagonal Wilson loop
couldnot be described at two loops by the ansatz (3.1). This restibfesn the question, however,
of whether the ansatz failed to describe MHV amplitudes hdyo= 5, or whether the relation
between amplitudes and Wilson loops failed beyond two I¢opsoth).

The high-energy limits of the ansatz (3.1) have been exairfimeconsistency with expected
Regge behavior. Far= 4 and 5, the ansatz appears to have consistent behaviorsncélllim-
its [38, 72, 73, 74] However, there appears to be a difficultthwhe ansatz for the six-gluon
amplitude starting at two loops [74]. Very recently, a comapion of the “parity even” part of the
six-gluon MHV amplitude [75] has revealed directly that #resatz (3.1) does fail for=6. How-
ever, a numerical comparison [75, 76] with the correspandiexagonal Wilson loop [71] shows
that the MHV-amplitude-Wilson-loop equivalence is stiltact at two loops and = 6. This result
means that the scattering amplitude also obeys the duabroaf Ward identity. On the other
hand, the solution to the Ward identity is not uniqueriee 6. Hence some other principle, as yet
unidentified, is needed to explain why MHV amplitudes arenegant to Wilson loops in MSYM.

11. Conclusions

We have seen that gluon scattering amplitudes in platiar 4 super-Yang-Mills theory have
some remarkable properties. It appears that the exact fofrthe four-gluon and five-gluon ampli-
tudes are given by the ansatz (3.1), which depends only arditiarent functions of the largék
coupling parametek: fy, f;, f, andC. Because an exact solution for one of the four functions —
fo, the cusp anomalous dimension — seems to be in hand [6], peedre can say that these cases
are “1/4 solved”. The fixed dependence of the ansatz (3.1) on theesoat angle(s) is apparently

IMost of the results reported from this point on appeared #iiis talk was presented, but before the write-up was
completed. | include them here because of their close coionewith the contents of the talk.

16



Gluon scattering in 4" = 4 super-Yang-Mills theory Lance J. Dixon

related to the uniqueness of solutions to a dual conformatiidentity forn =4 and 5 [68, 69],
and an equivalence between (MHV) amplitudes and WilsorsliBe 38, 66, 68, 69]. Although
the ansatz (3.1) fails for the MHV six-gluon amplitude [75}w&o loops, the equivalence remains
valid [75, 76].

There are still many open questions. Are there simple(r)/8pi&ator interpretations of the
other three functions? Can one find integral equations &mtlbased on integrability? What is the
precise relation between integrability and dual conformehriance? Do non-MHV amplitudes
obey any simple patterns, or bear any relation to Wilson sqectation values? From the struc-
ture of the one-loop amplitudeg,g. for six gluons [29], any such relations must be considerably
more intricate. What happens in other conformal theorigsallly, we can hope that some of these
advances may eventually help to shed light on scatterinditut@s in other gauge theories, par-
ticularly QCD, whose understanding — as exemplified by theotalks at this symposium — is
vital to the search for new physics at the Large Hadron Gallid
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