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1. Introduction

The question of whether the gravitational interaction is described by théekirtheory of
relativity at all scales is of both theoretical and practical interest. Onyh&de, the attempts to
construct an alternative model, successful or not, serve to betterstaaeing of the fundamental
principles lying behind the theory of gravity. The requirement of geremedriance fixes the form
of the gravitational Lagrangian almost uniquely. There exist only a fewifinations of gravity
which do not involve higher-derivative terms, the most known being statsor models of the
Brans-Dicke type [1]. A natural question then is whether the generariamce can be broken,
say, spontaneously, in a manner similar to the Higgs mechanism in gauge shédhat were the
case one would expect, by analogy with the gauge theory, that the grgeétsm non-zero mass.
More generally, the question is whether at all one can construct a temtsitheory of gravity
where the graviton has a non-zero mass. Whatever is the answer, it sélintg contribute to
better understanding of the gravitational interaction.

On phenomenological side, the conventional theory of gravity is completelyessful at
scales of order and below the solar system size up to scales of ordmstiarirof a millimeter.
At larger scales there is a hint of a problem: one needs to introduce tleewidk undetected) dark
matter in order to explain the rotation curves of the galaxies and galaxy dustecosmological
scales yet another form of matter — the one behaving like the cosmologiestiard — is also
needed [2]. With these two additions the Einstein’s theory apparently woiiteswell at all scales.
However, it is disturbing that the new components are only needed tactdneegravitational in-
teraction at very large scales. Moreover, at those scales the new gentponust play a dominant
role in order to fit the observations.

Before accepting the existence of the new forms of matter it is natural to evomdether
the gravitational interaction itself can be modified at large distances so apltrethe existing
observations without the need of the dark matter and the dark energyh&vlikely or not, this is
a logical possibility.

Perhaps one of the first attempts to find an alternative to the dark matter wasdeéknown
as MOND (modified Newtonian dynamics) [3, 4]. In this model one postulatesxiséence of a
critical acceleration at which the/? fall off of the Newtonian force changes to a slower depen-
dence. There is an ongoing discussion in the literature whether this modable phenomeno-
logically (see, e.g., Ref.[5] and references therein) and whether ibeageneralized to a fully
relativistic theory [6].

The idea to modify the gravitational interaction at large distances lies behiedaseecent
attempts to find alternative models of gravity. One of the first such attempts eviamed in
Ref.[7] in the context of extra dimensions. The model developed therévetdoranes with a
negative tension and was later shown to possess ghosts [8, 9]. Amdita@pt employing extra
dimensions is the DGP model [10]. This model has interesting cosmologicdiossiyll, 12].
However it is still debated whether it is consistent theoretically [13, 14, Y& another approach
is based on the actions which are singular in the low curvature limit, the so-dgdidyravities
(see, e.g., [16]). These models are widely discussed now in the cosnablogitext [17, 18, 19],
however their ability to pass the solar system tests is questioned [20, 21h(seever, Ref.[22]).
One should mention also the bi-gravity models which involve two metric tensorg4225]. None
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of these models possesses massive gravitons.

In these lectures | will concentrate on the question of whether the gradtobecgiven a mass.
This question has a long history dating back to late 30th when Fierz and P@lutigve constructed
a Lorentz-invariant mass term for the spin 2 field and shown that the regtiigiory has no ghosts.
It was noticed much later [27, 28] that the model constructed by Fierz aali fas a problem
which makes it phenomenologically unacceptable: it predicts the wrong ehthe light bending
by massive bodies, and moreover, this (wrong) prediction persists in thefir@hishing graviton
mass. This phenomenon of the absence of a smooth zero-mass limit is knoeas) Dam-
Veltman-Zakharov (vDVZ) discontinuity. The bending of light has begmeeixnentally measured
and shown to be in agreement with the Einstein’s general relativity, thueampgy ruling out the
Fiertz-Pauli model. The conclusion was that the graviton mass has to be steiaily

The status of the graviton mass seemed clear until it was noticed [29] thaistuntinuity
argument leading to the contradiction with the experiment has a loophole. Thédigding in the
massive case was calculated within the linear approximation, while the modelafaotin-linear
at the relevant scale. It was shown that the onset of the non-lindareeg non-zero graviton mass
happens at much larger distances from the source than one wouldiyredpect. What precisely
is the corresponding distance scale may depend on the non-linear termaatitime[30], but this
scale cannot be made short enough. Another manifestation of the sanmmsen is the strong
coupling between longitudinal polarizations of massive gravitons whichirsatsinacceptably low
energies [31].

A new approach to the modification of gravity has been developed recehitthiwmvolves the
spontaneous breaking of the Lorentz symmetry. The first model of thidgythe so-called ghost
condensate model [32]. Although the graviton is massless in this model, wenawll that it can
be generalized in such a way that the graviton gets a mass, while the problertisnae above
do not arise. One gets, therefore, a consistent theory which is welledelielow a certain scale
and in which the Lorentz symmetry is spontaneously broken, the graviton svwaasd obvious
pathologies are absent. We will argue below that this theory is a perfeoetiwal laboratory for
studying modifications of gravity and may even be interesting from the pheraoggcal point of
view.

Before we proceed to the discussion of this low-energy effective yhanimportant remark is
in orded. The model which we will consider in these lectures is a low-eredffggtive theory which
presumably arises from some fundamental theory in the low-energy redgitowever, no such
fundamental theory (the UV-completion) has been constructed so faedver, neither uniqueness
nor even existence of the UV-completion is guarantaqiori. Finding such a UV-completion
remains the major unsolved problem of models with the large-scale modificafignavity. We
will not discuss this problem in more detail here.

The outline of these lectures is as follows. We start in Sect. 2 by discussrggtieric ob-
structions to massive gravity. In Sect. 3 we outline the ways to overcome ficaildiés and present
a class of models where these ideas are realized and the graviton is mate méfssnvestigate
this class of models at the liner level in Sect. 4. Sec. 5 deals with some pheslogieal con-
sequences of the graviton mass in a concrete model. In particular, theloggrabsolutions are
considered. Finally, in Sect. 6 we summarize the results and outline the opstions.
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2. Theoretical obstructionsto massive gravity

Let us discuss in more detail the origin of the problems which arise when i@setdrmod-
ify the general relativity in such a way that the graviton gets a mass. Theb&ems are: the
appearance of ghosts, the vDVZ discontinuity and the strong couplinpatenergy scale.

Instabilitiesand ghosts. There may occur several types of instabilities. In the simplest case of a
single variablep the quadratic action has the form

/d“X(acbz—B(dicp)z— ),

wherea, 3 andn? are some real coefficients. We do not assume here the Lorentz inavidinch
would requirea = 3. The equation of motion for the variabjein the Fourier space reads

a@+ Bkip+nfe=0. (2.1)

One usually hasr > 0, B > 0, n? > 0 and the solution to eq. (2.1) is oscillatory. This is the
“normal” case which corresponds to usual particles.

If a > 0 butBk?+n? < 0 for somek, then the solutions to eq. (2.1) are exponentially decaying
or growing, so the instability is present. Two cases should be distinguighgd- 0 then fork >
\/|mé|/B the instability disappears. If this critical valuelofs very low, there may be not enough
time for the instability to develop. Thus, this kind of instability is not necessarilgthgiogy. On
the contrary, if < 0, then the instability persists at an arbitrary lakgend is therefore arbitrarily
rapid. Instabilities of this type are unacceptable.

Finally, if a < O then the contribution of the kinetic terap? into the energy is negative and
unbounded from below. This is physically unacceptable unless thegisldompletely decoupled
from the rest of the system, which is an unrealistic situation. Note thatif0 andBk? + n? < 0
at the same time, the solutions to eq. (2.1) oscillate, so the pathology doesomotghin the
equations of motion. However, both the kinetic and the potential term hawiveegnergy. The
field of this type is referred to as ghost.

The requirement of the absence of ghosts and instabilities is routinely uiettlitheory. It
allows, for instance, to fix uniguely the conventional gauge-invariam faf the Lagrangian of the
massless vector field;1/4F,,FH*Y. This latter observation may be used to see very easily that
there is only one Lorentz-invariant graviton mass term which gives ayhese from instabilities
and ghosts. Indeed, consider a quadratic Lagrangian for the metiickgionh,,,, around the flat
Minkowski space and add all possible Lorentz-invariant mass terms,

/d4 2)(hyw) + a2, + B(E)2} 2.2)

The first term in eq. (2.2) is just the standard kinetic term which comes frerkitstein action
/v/GRand describes massless gravitational waves. Its precise form is notiamipfar the argu-
ment. The second and third terms are the only possible Lorentz-invariatircations which are
quadratic inhy, and do not contain derivatives.

Let us see why only g8 = —a the action (2.2) describes a non-pathological theory. To this
end consider particular metric perturbation,
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This form of the metric perturbation corresponds to a “pure gauge”’qd8.8) is precisely the
coordinate transformation at the linear level. Like in the case of the gaugeytlome may show
that in the presence of the mass terms the longitudinal perturbations domihagk atomenta.
Inserting eq. (2.3) into the action (2.2) we see that only the mass terms (tadsad third
terms) contribute (recall that the Hilbert-Einstein part of the action is gaugeiant). Thus, we
find
/d“x{Za(duEv)er(Za +4B)(3uEM)2).

This is a general Lorentz-invariant action for the vector fi§ld As is well known from the field
theory, this action describes a consistent model only when it is propdrtorid, &, — dvfu)z,
which leads to the conditioi + a = 0. Settinga = —8 = —u? < 0 one arrives at the Fiertz-Pauli
model of massive gravity.

vDVZ discontinuity. Let us now see that the Fierz-Pauli model predicts the bending of light by
massive bodies which is different from GR even in the limit of zero mass. &gel to compare
the interactions of a given mass with a massive test particle and with the phdB @md in the
Fierz-Pauli model. In the language of quantum field theory these interaaienproportional to
the amplitude of the one-graviton exchange which in turn is proportional fgréviton propagator.
To be more precise, the quantity which determines the interaction is the contrattie graviton
propagator with the energy-momentum tensors of the source and the itigdepdlhe graviton
propagator in both massive and massless cases has the form

Puvap = Z:I“vel)\pv (2.4)

p2 — e

where the sum runs over all “polarization tenscd'lg’,’. In the massive case there are 5 such tensors.
In the rest frame of a (massive) graviton they have the following form:

00 0 O 000 O
v2[01/20 0 1]010 0
3|00 120 |° v2|00-10]"
00 0 -1 000 O
0000 0000 0000
10010 1 (0001 10000 2.5)
v2l0100|” 2|0000| 2|o0001|’ '
0000 0100 0010

while in the massless case there are only two polarization tensors which egatitba as follows
(in the frame where the vectgris parallel to thez axis),

000 O 0000

1 |o10 o 1]o0010 26)

V2|00-10|" v2|0100]" '
000 O 0000
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Note that two of these tensors are the same as in the massive case. Thetgubsf the polariza-
tion tensors into eq. (2.4) gives the following graviton propagators,

0 1 1 1 1
P’%p = M{an\nvarzflupnw\ _énuvr])\p

+(p-dependent terrr)%,

1(1 1 1
PIT\):)\Op = pz{zrlu)\ ’7vp+§’7up’7v)\ —énuvn)\p

+(p-dependent terrr)%.

The terms containing are of no interest since the propagator is contracted with the conserved
energy-momentum tensor and these terms give no contribution.

The crucial difference between the two cases is the coefficient in éfotite termn,,,n,,
which couples to the trace of the energy-momentum tensor. This diffedeesenot vanish in the
zero mass limit. Clearly, it is due to a different number of graviton polarizatiotiee massive and
massless cases, as can be seen by comparing egs. (2.5) and (2.6).

Normalizing the interaction with the test massive particle to the observed valeiean predict
the bending of light in both cases. It turns out that the predictions arereliff. To see this let
us denote the gravitational interaction constantGaand G in the massless and massive cases,
respectively. In the two cases the interaction between the non-relativistgesia proportional to
the following combinations,

_ 1 1
massless case:G T,y mop T, p = EGTooTéo?,
, . 2 1
massive case: G T,y P;;“jf\op T, p = §GT00T60W-
This implies in the small mass limit that
~ 3
2 (2.7)

In the case of the light bending by a non-relativistic mass the third term in tp@apgator does not
contribute because of the vanishing trace of the electromagnetic energgrtion tensoﬂ"ﬁ =0,
and the result is the same in both cases,

1
massless case: GTooTéoga

~ 1
massive case: GTyoTlo———.
00'00 p2 —m

In view of eq. (2.7) the light bending predicted in the massive theory in the lihtiteovanishing
graviton mass is B4 of that predicted in general relativity. Thus, there exists a discontinuttyein
limit when the graviton mass goes to zero.
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The low-scale strong coupling. The calculation of the gravitational potential and of the light
bending outlined above were performed in the linearized approximatiorevtherself-interaction
of the gravitational field is neglected. In general relativity this is a goodaqimation at distances
which are much larger than the Schwarzschild radius of the mass prodheiggavitational field.
One may wonder whether this approximation is correct in the Feirz-Pauliveagsavity as well.

It was first noted by Vainstein [29] who considered the spherically-sytmensolutions in the
Fierz-Pauli model that for these solutions the weak-field approximatioalychreaks down much
further from the source than the gravitational radius. Vainstein argaedhé validity of the linear
approximation is controlled by the parameter

£ (2.8)

_ Ry
mgre”
wheremy is the graviton mass arf®y = 2M /Mp, is the Schwarzschild radius corresponding to the
massM. Eq. (2.8) is remarkable in that the graviton mass enters in the denominatbgtgbe
expansion parameter always becomes large when the mass of the graasaio gero.
Let us see what are the numbers. Assuming the solar system planetefgel\thational field
of the Sun in the linear regime implies that the graviton mass should be smaller thiametse
radius of the Pluto orbit,
my < (40AU) 1~ 3x107%eV. (2.9)

Then the parameterat the Mercury orbity ~ 0.3AU equals
£~ 15

so that the motion of Mercury should be strongly affected by non-linearitigsvever, even the
estimate (2.9) is way too optimistic. From observations of the star motion in galarigsahiton
mass should be smaller than at least KpcThe parametet at the Earth orbit around the Sun
would then bes ~ 107, so that the gravitational interaction would be deeply in the non-linear
regime. Thus, the problem of discontinuity is replaced by the strong couplotgem.

By itself, the strong coupling does not mean that the theory is inconsistenolstrvations.
Indeed, the arguments of Ref.[29] were reconsidered in Ref. [3@fevit was argued, within the
DGP model of modified gravity, that particular non-linear effects may makérémsition to the
zero graviton mass continuous and weaken the experimental limits on the ntlasgcdviton.

From the point of view of the quantum field theory, the onset of the nomiregime shows
up as the strong coupling at high energies. When graviton is given a thasgntribution of the
longitudinal polarizations of the graviton to the graviton-graviton crosg@egrows with energy,
as has been checked by the direct calculations [31]. This leading to timg stoupling at some
energy scale. These two strong coupling phenomena — classical amaioua- are interrelated
and are manifestations of the same problem [33].

3. Constructing the L orentz-breaking massive gravity models

Our goal now is to construct a model where the graviton is massive andhwghaompatible
with observations despite the problems outlined above. To be mode preeisdll\wequire that
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the flat Minkowski space is a solution to the equations of motion, that thersdrestabilities and
ghosts in perturbation theory around the flat space, there is no disdontimphysical quantities
when the graviton mass goes to zero, and that the theory is weakly coghbeddome sufficiently
high scaleA. We will see that all these requirements can be satisfied if one allows thatkzore
invariance to be spontaneously broken.

To see whether such models exist at all one may consider a generic gnaaags term which
preserves rotational invariance but not necessarily the Lorentdanea:. Following Ref.[34], this
term may be written as

1
5Mp; {mghgo-+ 2mihg; — mghi; + mghi — 2mghooh }, (3.1)

wherem; are 5 mass parameters which are, in general, different. The graviton(theseass of
the tensor perturbations) is given by. Clearly, the Lorentz invariance requires that only two of
the mass parameters be independent,

m=mp=—a® mg=mg=-p% mg=a’+p%

wherea andp are arbitrary. The Fierz-Pauli model corresponds to the @dse — 2. It has been
shown in Ref.[34] that the choigey = 0 leads to a model free of ghosts, vDVZ discontinuity and
low strong coupling scale. Thus, all the above requirements may, in prinbiplsatisfied at the
same time. We will discuss other possible values of the parameters shortly.

The mass term (3.1) can be considered as the quadratic part of a meralgetion depending
on the metric components,

S= / d*xy/g {M3 R+ A*F(guy) + matter} , (3.2)

where the functiorF (g,v) = F(9oo, 9o, Gij) is assumed to preserve rotations but not necessarily
the Lorentz invariance. The scalewhich will eventually play the role of the cutoff of the model
is related to the graviton masses as
i 2
Mg,

We will assume in what follows that there are no other scales in the funtid@ur purpose now
is to investigate the models with the action (3.2).

The analysis is greatly simplified by the so-called Stlickelberg’s trick whiokists in restor-
ing the gauge invariance by introducing auxiliary scalar fields, a someéfse” Higgs mechanism.
To illustrate how this works consider an example of the (Lorentz-invariargsivaelectrodynam-

ics with the action
S= /d“ {—4Fﬁv+mzA2}

There are three degrees of freedom: two transverse polarizatioresptithon, and the longitudinal
polarization. The gauge invariance is broken by the photon mass term.slreiwiadd a scalar
field @ in such a way as to restore the gauge invariance,

S— /d“{ L+ (A 0“4))2}.
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The new action is explicitly gauge-invariant under the transformations

¢ —opta,

and has the same three degrees of freedom as the original action.Viglpi@mme may use the gauge
transformation to sep = 0. Then the original action is recovered. On the other hand, one may
concentrate on the “Goldstone” part of the actiof(d,¢)? and recover the action for the phase
part of the Higgs field in the standakt(1) Higgs mechanism. This is this freedom of the gauge
choice which simplifies the analysis.

This trick can be generalized [33, 35] to the case of the action (3.2).yrhmstries of general
relativity are four coordinate transformations

xH — xH + EH(x).

Thus one has to introduce 4 scalar “Goldstone” figfsand ¢'. We stress that these fields are
scalars and thus must transform as scalars under the coordinatetnaaisbns. For this reason it
is not straightforward to introduce these fields into the action (3.2) in suchyahat they restore
the general covariance. The job is done by the following combinations [35]

1
X = 59" 0,000,
Vi= %g“véuqv‘dufpo,
Yl = %g“vﬁuqoidu(pj. (3.3)

The factor A% is introduced to make these combinations dimensionless. Thus, the getieral ac
for the massive gravity becomes

S— /d4x\/Q{MF2,|R+/\4F(X,Vi,Y”)+Lmatter}. (3.4)

Several remarks are in order. First, the Goldstone fields only enter tiom dlorough the
derivatives, as they should. Second, they only couple to the metric drtd tloe matter fields
directly, so that they do not introduce extra interactions except the mdtificaf the gravity law.
Finally, as in our toy example, one can choose the gauge (the referanoe)fin such a way that
the action (3.4) reduces to the action (3.2), as we will now show.

Before that we need to discuss one important point — the vacuum solutitresimodel (3.4).
More precisely, we have to determine under which conditions the flat spHtwevacuum solution.
To this end let us assume that there is no ordinary matter. Then the Einstatroequilerived from
the action (3.4) are

1
Ryv — éguvR: MSlev,

WhereTﬁ, is the energy-momentum tensor of the Goldstone fields. Since the left handfshds
equation is zero in the flat space, the right hand side should also beTdars, we have to deter-
mine conditions under which the Goldstone energy-momentum tensor vamshesMinkowski
background.
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As usual, the calculation of the energy-momentum tensor is done by the vaoétize Gold-
stone action with respect to the metric. Denote

OF = Fx X +FdV' +FjoY,
where
1 0 O sV
OX = 1 0u 0,909,
. 1 .
V' = pa“gooav(p'ch“V,
. 1 . .
oY = ﬁduqo'év(plég“".
Making use of the definitiodS=1/2 [ T,,dg"", one finds

TS, = 2Fx0u¢°0,¢° + F (0,90, ¢ + 0,4 9, ¢°) +

The requiremen‘t'qu = 0 should be considered as the set of equations for the Goldstone fietds. F
an arbitrary metric these equations are impossible to satisfy because #héfeeaquations (which
are all in general independent) for only 4 unknowns. However, ferflidit space the solution is
easy to guess. Consider the Goldstone fields of the following form,

o° = an,
(pi — b/\ZXi,

wherea andb are two unknown constants. For this ansatz the equaﬂiﬁm& 0 reduce to the
following two algebraicequations,

2a%Fy (a2,b%) — F(a?,b?) = 0,
20°Fy (a%,b?) — F(a?,b%) = 0, (3.5)

where we have used the notatibn = Fyg;j. Since these are two equations for two variables, in
general they have a solution. Without loss of generality we will assume in fohaws that this
solution is such thad = b = 1. Thus, the vacuum in our model is

@° = N,
¢ = N’X. (3.6)

Note that the fields themselves do not enter the action, so there is nothing witbrthem growing

at infinity. However, since the vacuum values of these fields are spaeedependent, they break
the Lorentz symmetry. The rotational symmetry remains unbroken if the actisemwes the global
rotations of the fieldg' with respect to the indek Indeed, in this case the space rotations of the

1For symmetry reasorig; vanishes identically, while th@; is proportional todj. Thus, only two equations are
independent.

10
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vacuum manifold (3.6) can be compensated by the global rotations of thg seldhat of the two
rotation groups the diagonal part remains unbroken.

We can now see that the action (3.4) is equivalent to the original action (B8ged, for
an arbitrary metric we can choose the gauge in which the Goldstone fieldstedheir vacuum
values (3.6) (the “unitary” gauge). Then we have

X=g% Vi=g¢% Y=gl (3.7)

so that the functior becomes a function of the metric components as in eq. (3.2).

4. Linear perturbations

Let us discuss the behavior of the linear perturbations in the flat baskdroWwe have to
consider both perturbations of the methnig, and perturbations of the Goldstone fielgs

o = NxH + i,
Ouv = Nuv +hpy.

The purpose is to show that there are neither ghosts nor instabilities pi@ssome values of the
mass parameters.

First, let us clarify the relation between the masses entering eg. (3.1) afhttteon F in
the action (3.4). The mass term (3.1) is recovered from eq. (3.4) in theyg#age where the
perturbation of the Goldstone fields are zero. To calculate the mass paraoreehas to expand
/9F up to the second order in metric perturbations. The zeroth order term igbavant constant.
The linear terms must vanish; this is the condition that our background is #osdio the Einstein
equations. If we start with an arbitrary functién the vanishing of the linear terms will be equiva-
lent to the conditions (3.5) which ensure that the energy-momentum tengwr Goldstone fields
is zero. Finally, the quadratic terms should be identified with the mass parameétersoverall
mass scale is already clear: assuming the fundti@oes not contain other scales apart frdm
the masses are of the ordef ~ A*/M3,. Carrying out the expansion one finds, for instance

A (1
mg = <2Fx+Fxx),

V3

/\4
M = 20 (Re+F),

PI

where the subscript oR denotes the derivative with respect to the corresponding variable. An
important observation which will be useful in what follows is that if one tatkes functionF
which depends only on the two argumeKRtaind

Wi =Yl —vivi/x, (4.1)

then one hasrZ = 0. This follows from the fact that botX andW!! are invariant under the
following symmetry:

@° — ¢°
¢ — ¢ +& (¢, (4.2)

11
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wherex are arbitrary functions, while the term proportionalrt@ breaks this symmetry. As we
will discuss shortly, imposing this symmetry leads to a particularly interesting ofassdels.

The next question to discuss is the absence of instabilities and ghosts. Baver@lready
discussed, the problem comes from the longitudinal polarizations of tivéagrai.e., from the
purely Goldstone sector. This part of the quadratic action may be obtayn&dbistituting

into the full quadratic action for perturbations. Since in general relativigypigrturbation (4.3) is
a pure gauge, the Einstein part of the action does not contribute, andltheomtribution comes
from the mass term which takes the form

gmé.{zn%wom)%nﬁ(aom%m%(ai 16)2 + (418 — 22) ododi 5

—nﬁ(dm)z—(nﬁ—m%)(dim)z}.

We need to determine under which constraints on the masses this Lagraefinas @ consistent
model.

Itis convenient to use the intern@[ 3)-symmetry and separate the vector and scalar represen-
tations. The fieldp is a scalar undeD(3), while the vectorg can be decomposed in the transverse
and longitudinal parts,

=1 1
wherert' is transverse,
am =0,

andri- is a divergence of a scalat- = g/, /—djz. The vector and scalar sectors separate. The
Lagrangian of the vector sector reads

1
L9 = ZM {mi(dort’)* — mB(a 7] )%} .
For the absence of pathologies it is sufficient to requifam? > 0.

In the scalar sector the analysis proceeds in a similar way but is more inwdvede has to
deal with the coupled system of equations. Without going into details of thelatitims which can
be found in Ref. [35], let us summarize the results.

e At general values of the mass parameters there are 6 propagatingsiefifeeedom (two
tensor, two vector and two scalar modes). One of them is necessarilygditberor unstable.
The consistent model arises only in special cases.

e In the caseng = 0, as was found in Ref. [34], one of the scalar modes does not prigpaga
Five other modes, 2 tensor, 2 vector and 1 scalar, form five polarizatibthe massive
graviton. Note, however, that the masses of these modes are, in geliféeatnt. This is
the manifestation of the Lorentz symmetry breaking. There are no pathologiés model
provided the masse®? ... m3 satisfy certain inequalities [34].

12
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e In the casem% = m% one of the scalars does not propagate. As in the previous case, the
remaining 5 modes can be viewed as 5 polarizations of the massive graviton.

e Finally, in the caser? = 0 none of the scalar and vector modes are dynamical, so the only
propagating degrees of freedom are the two tensor modes. These avedasssive and
have the massy. No ghosts or instabilities are present provided the masses satisfy certain
inequalities.

There is one more important issue which has to be discussed in the contimdanfpertur-
bations. The action (3.4) is no more than the low-energy effective actioe. sBould expect the
appearance of higher terms suppresses by the powers of the enédgy dy the cutoff scalé.
These terms may contain, in particular, higher derivatives of the figlasxd @. Usually these
terms can be neglected at low energies. However, the absence of inst&abddigres the fine-
tuning relations as was explained above. The violation of these fine-tuelaigons may result
in instabilities even if this violation is tiny. For instance, if a dispersion relatign= 0 which
corresponds to a non-propagating mode acquires a correction amgesttaw? = —ak?, this may
lead to a rapid instability at sufficiently high momentum even if the coeffigieistsmall. So, one
has to make sure that the fine-tuning relations needed for the stability of tred oaodbe protected
by symmetries. This is probably not the case for the phgse 0 [35]. On the contrary, the phase
mé = 0 can be protected against higher-order corrections by the symmetry

X —>Xi—|—fi(t),

which is a part of the group of coordinate transformations. In terms of tidgine fields this is
precisely the symmetry (4.2).

This is this last case that we will consider in more detail in the remaining parésétiectures.
We will see that it has a number of other attractive features apart framg btable against higher-
order corrections.

5. Some phenomenological implications

5.1 Newton’s potential

Consider, from the phenomenological point of view, a particular clagnarels with the
functionF of the form

F=F(XW).

The first question which we have to address is whether — and how — theoNswaw is modified
in these models. Thus, we have to calculate the linear response of the syst@wint-like source
of the gravitational field.

It is convenient to work in the “unitary gauge” where the Goldstone fiefdssat to their
vacuum values (3.6). In this gauge the remaining perturbations are tiel@gions of the metric
OGuv,

Ouv = Nuv + OQGuv- (5.1)

13
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In the notations of Ref. [36] they are parameterized as follows,

5900 = 2¢;
dgoi = §—aB;
6gij = —hij — dFj — JjF + 2(Ydj — AJE),

whereh;; are the transverse and traceless tensor perturbagoandF are the transverse vector
perturbations, while, ¢, B andE are the scalar perturbations.

The quadratic Lagrangian for perturbations consists of the EinsteintHiken, the mass
term and the source term,

Explicitly, the Einstein-Hilbert part reads

1 1
Ley = M%{—Zhij (98 — 07)hij — 5 (S +00F1)9F (S +0oF)

+4(9 + 0B — OFE) 92 + 6WFY — 2402y |, (53)
while for the mass term one finds
1 1
M { — BN — SmB(aF))?+ 8+ (d — ) (97E)” -
—2(3m8 — M) W7 + 3 (3mE — m) Y+ 2 9E — GmEP Y | (5.4)

Note that the tensor, vector and scalar sectors do not mix, so they candidered separately.
We also add the external sour@g, which is assumed to be conservettT,, = 0. The
corresponding contribution to the Lagrangian can be written as

1
Ls=~Too (¢ + 0B~ &E) — Tty + (S +90F) Toi + 5hi T

All the combinations of metric perturbations which enter this equation are gauggant. The
one multiplyingToo,

® = ¢ + B — 93E,
plays the role of the Newtonian potential in the non-relativistic limit.
Tensor sector. In the tensor sector there is a single equation of the form
(=05 + 07 —mg)hij = 0. (5.5)
This equation describes propagation of a massive gravitational wavée tNat this wave has

only two polarizations. This is, of course, only possible because of thatiin of the Lorentz
invariance.

14
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Vector sector. The field equations in the vector sector are

—0/(S + 0oR) = —Tai, (5.6)
0002(S + doF) + MR = doTo. (5.7)

Taking the time derivative of eq. (5.6) and adding it to eq. (5.7) gives
F= oa

provided tha1m§ # 0. Thus, the vector sector of our model behaves in the same way as in the
Einstein theory in the gaudg = 0. There are no propagating vector perturbations.

Scalar sector. The field equations for the scalar perturbations are

2079 + Mg + MI°E — 3Gy = Mz (5.8)

207® — 207 + 605 Y — (3m§ mg) 6°E

+3(3mg —mB) ¢ — 3mi¢p = M.%.’ (5.9)

—2023§w+ (M5 —mB) '

— (3m—mg) 67y + mE97$ = —‘;ﬂgf (5.10)

20230 = ‘;‘:\IE‘I) (5.11)
Eq. (5.11) implies

w- 5.12 Jj‘él T go(x), (5.12)

whereyp(X') is some time-independent function. From Eqgs. (5.8) and (5.10) one finds

6 = & {2mrdy -+ 208 — E) 3o} (5.13)

0P = % { (30— 2mBB)y — 207 go}. (5.14)

where
A = i — mg(mg — mg).

Finally, substituting egs. (5.12), (5.13) and (5.14) into eg. (5.9) one fmelgauge-invariant po-
tential ®,

_ 1 Too+Ti 98 Too +m§ 72rr6m§i Too
2 aMg  Catamg 9% aM2,

m% (3A — 2mpm3) 024’ +< 2m§m2> Yo. (5.15)

The first two terms on the r.h.s. of eq. (5.15) are the standard contribwatidhs Einstein theory,
the first becoming the Newtonian potential in the nonrelativistic limit. The third terrthe r.h.s.
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is the new contribution specific to massive gravity. We will discuss this term ir hetail shortly.
Finally, the terms on the second line of eq. (5.15) are also new; they areoplhional to the
time-independent integration constap(x'). The value of this constant is determined by the
initial conditions. Since there are no absolutely static objects in the Univbesealue ofyy is not
related to the gravitational fields created by massive bodies. Thus, theseate irrelevant for us
here.

Whenyp = 0, the gauge-invariant potentialsand g in differ from their analogs in the Ein-
stein theory®g and e by the mass-dependent third term on the r.h.s of eq. (5.15),

Y=y,
2mgmE\ Mg Too
P=0 3— —= . 5.16
This term vanishes if all masses uniformly go to zero, which implies the abs#rtbe vDVZ
discontinuity as expected. In the coordinate space this term leads to theextridution to the
potential which has the “confining” form, so that the whole potential becomes

® =GyM <—:+u2r), (5.17)
where _
1 2
2 —_— e — —_——_— =
p? = 2m§< A ) (5.18)
The growth of the second term indicates the breakdown of perturbationytla¢ distances =
1/(GNMu?).

An interesting situation arises when there is no modification of the Newtoniant@itel his

may happen if

3A— 2mpm5 =0 (5.19)
andA # 0. In this case the static interaction between two massive bodies is descyilibd b
standard Newtonian force proportional térd, so the deviations from the standard gravity would
not be possible to detect in the Cavendish-type experiments. Note th&t ). does not require
that the mass of the gravitar, is zero. Thus, in the case when the condition (5.19) is satisfied the
non-zero graviton mass coexists with the long-range force. This is g¢he@mnmanifestation of the
violation of the Lorentz invariance in this model.

Since the Lorentz symmetry is broken in our model, one should expect tfernpeeframe
effects. These effects, related to the motion of the gravitational field saitb respect to the
preferred frame, are proportional to the square of the velocity of this mefioHowever, when
obtaining eq. (5.16) we did not neglect the motion of the source, so in the ppasximation such
effects are absent; they only arise at the non-linear level and thusrctrgadditional suppression
by the measure of linearity, i.e., by the gravitational potential which is in turmdsfre? in realistic
systems. Thus, the preferred-frame effects are suppressed tactbedf the order o¥* and can
be neglected.

The condition (5.19) can be ensured by imposing the following dilatation symmetry

t — At,
X — AYX, (5.20)
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whereA is the transformation parameter apds a constant. Requiring the symmetry (5.19) is
equivalent to a taking a particular dependence of the funétion its arguments,

F=F(Z") (5.21)

where

Zl = X",
We will see in the next section that the model obtained in this way has a numbleenémenolog-
ically interesting features.

5.2 Cosmological evolution

The symmetry (5.19) may seem artificial, but there is one more reason to eonsidliels
possessing the symmetry. To understand this reason we have to discessitodogical solutions
in massive gravity. The action of our model is a full non-linear action of thedaergy effective
theory. Thus, we can study the non-linear gravitational fields and, ticpkar, the cosmology,
provided the relevant energy scale is below the cutoff stale

The homogeneous and isotropic ansatz in the spatially-flat case reads

ds? = dt? — a2(t)d», (5.22)
o = q(t),
¢ =N,

For this ansatz the variabW!l takes the form
- 1
WH = _?cﬁj,

so the functiorF becomes a function of and the scale fact@ which one can consider as two in-
dependent variables. The equations which determine the cosmologital@vare the Friedmann
equation
a)’_ 1 NP — AL = 5.23

<a) —6M'%|{9m+ A — }=6MSI{Pm+P1+PZ}, (5.23)
wherepp, is the energy density of the ordinary matter not including the Goldstone fehdisthe
field equation forp®,

) (a3\/>? Fx) —0. (5.24)

It is straightforward to solve this system of equations for any giventfond-(X,a). After the
integration, Eq. (5.24) gives an algebraic relation betwéand the scale fact@ The dependence
X(a) as found from Eq. (5.24) determines the behavior of the Goldstoneyedengityp; + p, as
a function ofa. This makes Eq. (5.23) a closed equation for the scale fatpr

Rather than solving egs. (5.23) and (5.24) (see Ref.[37] for details)sleliscuss general
properties of the solutions. We are interested in solutions suctathato at late times. Let us
assume that the functiofi(a) which results in the solution of eq. (5.24) asymptotes to some power
of a. Then there exists a constansuch that the combinatiod?/a® goes to a non-zero value as
a— co. Then eq. (5.24) implies

P1 = cons (5.25)

a_37:|./y7
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i.e., one of the contributions of the Goldstone fields to the energy densitydlilee a matter with
the equation of stater = —1/(3y).

By construction, we havé'l = XYWl — Z,8;, whereZ, is some constant. If we assume that
the functionF is regular in the limita — o, then it also has to go to some constant Fo = F(Zy).
Thus at late times of the evolution the functi®rmiepends on the combinati@i = XYW'l. In other
words, this point is an attractor of the cosmological evolution. This is ano#ason to consider
the actions which depend on the Goldstone fields in the combinztioa XYW'/. Note that the
second contribution to the energy density behaves at late times as a cosalalog&tant.

5.3 Experimental signatures

Let us first discuss the experimental constraints on the graviton massilMgeneentrate on
the case of the functiorns satisfying the constraint (5.21). In this case the Newtonian potential
remains unchanged, so the existing constraints from the Cavendishxypeneents and solar
system tests [38, 39] do not apply. On the contrary, the presence mitseaffects emission of the
gravitational waves. Precision observations of the slow down of the bnbitton in binary pulsar
systems [40] imply that the mass of the gravitational waves cannot be laggettih frequency of
the waves emitted by these systems. The latter is determined by the period dbithermotion
which is of order 10 hours, implying the following limit on the graviton mass,

mp < 2x 10 *Hz ~ 10 %V ~ (10%cm) 2.

This is a very large mass in cosmological standards. It would certainifiée out if it implied the
Yukawa-type deviations from the Newtonian potential.

The non-zero mass of the graviton leads to interesting consequendks foimordial gravi-
tational waves as well. The massive gravitons can be produced duringghmlogical expansion.
In the expanding Universe eq. (5.5) is modified in the following way,

(—0§ —3Hdo+ 2 /a® —mg)hij = 0, (5.26)

whereH = &/ais the Hubble constant. This equation is identical to the one which governs the
behavior of a massive scalar field such as axion. Thus, the massiitogsawill be efficiently
produced during inflation (cf. Ref. [41, 42]). One may estimate the amaiutite gravitational
waves produced. Assuming the inflationary scenario in which the Hublpéemgder is constant
(e.g., as in the hybrid models of inflation [43]), the spectrum for the magsasgtons is that for

the minimally coupled massive scalar field in the de Sitter space [44, 45, 46, 47]

e () 12"

Superhorizon metric fluctuations remain frozen until the Hubble factorrbessmaller than the
graviton mass, when they start to oscillate with the amplitude decreasiag®#s The energy
density in massive gravitons at the beginning of oscillations is of order

2 2, . 3H?
Po ~ MPl”’é<hij> =g (5.28)
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where we integrated in Eq. (5.27) over the modes longer than the horizalay The fraction of
the energy density in the massive gravitational waves is, therefore,

_ Po _ Po (He ¥2

9= == — , (5.29)
Bpc  2Bpc \Ho

wherez, is the redshift at the start of oscillationdg ~ m, is the Hubble parameter at that time,

He ~ 0.4-10712 s71 is the Hubble parameter at the matter/radiation equality,zard3200 is the

corresponding redshift. Combining all the factors together one gets

N\ 4
Qg ~ -10%(mg - 104%cm) /2 <'/4\'> . (5.30)

This estimate assumes that the number of e-foldings during inflation is latge>lki?/n?, which
is quite natural in the model of inflation assumed. Thus, the amount of theayrayproduced at
inflation may be enough to constitute the dark matter of the Universe.

Let us estimate the amplitude of the gravitational waves assuming that they ceaipatthe
dark matter in the halo of our Galaxy. The energy density in non-relativistidtgtional waves is
of orderM3 mgh7;. Equating this to the local halo density one gets

2-10*H
(hj) ~ 10710 (mzz> . (5.31)

At frequencies 10° +— 10-° Hz this value is well above the expected sensitivity of the LISA de-
tector [48]. Note that in the close frequency range .0 10~ Hz there exists a much lower
bound [49] on the stochastic background of the gravitational waves gdmam the timing of the
millisecond pulsars [50, 51], which is at the levekaf < 107°. Thus, itis possible that the massive
graviton as a candidate for the dark matter can be ruled out by the reardlifse already existing
data on the pulsar timing.

The relic graviton abundance depends on both the specific inflationarglrand the details
of the (unknown) UV completion of massive gravity. Therefore, in gehenassive gravitons may
not comprise the whole of the dark matter in the Universe. In that case ¢hesmsn of the graviton
as the dark matter candidate does not necessarily rile out the model ofengissiity and massive
gravitational waves may still be present at a lower level. These gravitaticmees differ from
the conventional stochastic gravitational wave background in that teap@anochromatic with the
frequency equal to the graviton mass. It is important that the expectet 4d8sitivity allows to
detect the presence of such gravitational waves at a significantly lovethean in Eq. (5.31).

6. Summary and outlook

Summarizing the above discussion we arrive at the following conclusions:

- Existing attempts to give graviton a mass in a Lorentz-invariant way suéfer §evere prob-
lems (of which the strong coupling is the most harmless one). It is not clélae aoment
whether one can deal with the strong coupling efficiently and constru@gmenologically
viable Lorentz-invariant model of massive graviton.
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- The breaking of Lorentz invariance introduces enough freedom t¢oirovent these prob-
lems. Namely, one arrives at a variety of models which at the linear levdleaarameter-
ized by 5 graviton mass parameters. Some regions in the space of thasetgasdead to a
consistent low-energy effective theories with massive gravitons.

- A particular class of models, the ones possessing the residual symmayh@s a number
of attractive features. The two transverse traceless polarizations gfaton are the only
propagating degrees of freedom in these models. The cosmologicaiiendlas an attractor
point possessing the additional dilatation symmetry (5.20). In this point thedmtaloutions
of the Goldstone fields into the energy-momentum tensor have the form ofsheotogical
constant and of matter with the equation of state which depends on the pasaofetee
model. The graviton masses go to finite constants during the expansion ofitrerde.

- In the models possessing symmetries (4.2) and (5.20) the non-zero mmss graviton
coexists with the unmodified Newtonian potential — the possibility which is due toithe v
olation of the Lorentz invariance. This allows for relatively large massdawefgraviton
mp < (10*cm) ! to be phenomenologically acceptable. Massive gravitons can be pobduce
in sufficient amount in the early Universe and are a new candidate folatfkematter.

- The relic massive gravitons produce an easily identifiable monochromatial igthe grav-
itational wave detectors. Among those LISA has a large potential to probh@ésence of
massive gravitational waves and to rule out graviton as a dark matter esadid

At the same time, there remain quite a number of open questions which reqtier fstudy.
Here are some of them:

- Modern cosmological observations are becoming more and more prétiseder to be in
accord with these observations any alternative theory of gravity hastessfully address
several issues, one of which is the structure formation. The first sfap@s@rocess, the
linear growth of perturbations, is straightforward to study in the massadgtgmodel. The
model of massive gravity considered in Sect. 5 pass this test [52]. Hoytbe ability of the
model to reproduce other cosmological data remains to be tested.

- When solving for the linear perturbations in sect. 5 we have seen that éippears an in-
tegration constango(x'). We have set this constant to zero since we were interested in the
gravitational fields of the massive bodies which are not related to this cdn$tethe cos-
mological context this constant is also present. Presumably it is determinachibally and

is driven to zero at the inflationary stage, but this remains to be demonstrated

- An interesting special cage= 1/3 deserves attention from another perspective. In this case
both contributiongo; and p, have the vacuum equation of state= —1. As a result, the
acceleration rate of the late de Sitter phase is a dynamical quantity, deterryitreibitial
conditions in the Goldstone sector rather than by parameters of the actiais Eimilar
to the situation in the unimodular gravity [53] where the cosmological constaaitisa
constant of integration. Thus, the massive gravity models may shed light oagh®logical
problem.
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- Itis worth studying in more detail the theories which do not possess thetailrsymmetry
(5.20). In these models the gravitational potential is modified at large distdrora the
source. Itis possible in principle that these models may provide an explaoétite galactic
flat rotation curves alternative to the dark matter.

- Finally, having the full non-linear action one can study non-linear solstafrthe model, in
particular, black holes. The latter are of particular interest in view of tipeebed progress
in their experimental observations [54]. SOme progress has beenyahlehikved in this
direction [55].
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