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1. Introduction

The question of whether the gravitational interaction is described by the Einstein theory of
relativity at all scales is of both theoretical and practical interest. On theory side, the attempts to
construct an alternative model, successful or not, serve to better understanding of the fundamental
principles lying behind the theory of gravity. The requirement of generalcovariance fixes the form
of the gravitational Lagrangian almost uniquely. There exist only a few modifications of gravity
which do not involve higher-derivative terms, the most known being scalar-tensor models of the
Brans-Dicke type [1]. A natural question then is whether the general covariance can be broken,
say, spontaneously, in a manner similar to the Higgs mechanism in gauge theories. If that were the
case one would expect, by analogy with the gauge theory, that the gravitongets a non-zero mass.
More generally, the question is whether at all one can construct a consistent theory of gravity
where the graviton has a non-zero mass. Whatever is the answer, it will certainly contribute to
better understanding of the gravitational interaction.

On phenomenological side, the conventional theory of gravity is completely successful at
scales of order and below the solar system size up to scales of order a fraction of a millimeter.
At larger scales there is a hint of a problem: one needs to introduce the (otherwise undetected) dark
matter in order to explain the rotation curves of the galaxies and galaxy clusters. At cosmological
scales yet another form of matter — the one behaving like the cosmological constant — is also
needed [2]. With these two additions the Einstein’s theory apparently worksquite well at all scales.
However, it is disturbing that the new components are only needed to correct the gravitational in-
teraction at very large scales. Moreover, at those scales the new components must play a dominant
role in order to fit the observations.

Before accepting the existence of the new forms of matter it is natural to wonder whether
the gravitational interaction itself can be modified at large distances so as to explain the existing
observations without the need of the dark matter and the dark energy. Whether likely or not, this is
a logical possibility.

Perhaps one of the first attempts to find an alternative to the dark matter was themodel known
as MOND (modified Newtonian dynamics) [3, 4]. In this model one postulates theexistence of a
critical acceleration at which the 1/r2 fall off of the Newtonian force changes to a slower depen-
dence. There is an ongoing discussion in the literature whether this model is viable phenomeno-
logically (see, e.g., Ref.[5] and references therein) and whether it canbe generalized to a fully
relativistic theory [6].

The idea to modify the gravitational interaction at large distances lies behind several recent
attempts to find alternative models of gravity. One of the first such attempts was performed in
Ref.[7] in the context of extra dimensions. The model developed there involved branes with a
negative tension and was later shown to possess ghosts [8, 9]. Anotherattempt employing extra
dimensions is the DGP model [10]. This model has interesting cosmological solutions [11, 12].
However it is still debated whether it is consistent theoretically [13, 14, 15]. Yet another approach
is based on the actions which are singular in the low curvature limit, the so-calledf (R) gravities
(see, e.g., [16]). These models are widely discussed now in the cosmological context [17, 18, 19],
however their ability to pass the solar system tests is questioned [20, 21] (see, however, Ref.[22]).
One should mention also the bi-gravity models which involve two metric tensors [23, 24, 25]. None
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of these models possesses massive gravitons.

In these lectures I will concentrate on the question of whether the graviton can be given a mass.
This question has a long history dating back to late 30th when Fierz and Pauli [26] have constructed
a Lorentz-invariant mass term for the spin 2 field and shown that the resulting theory has no ghosts.
It was noticed much later [27, 28] that the model constructed by Fierz and Pauli has a problem
which makes it phenomenologically unacceptable: it predicts the wrong valueof the light bending
by massive bodies, and moreover, this (wrong) prediction persists in the limitof vanishing graviton
mass. This phenomenon of the absence of a smooth zero-mass limit is known asthe van Dam-
Veltman-Zakharov (vDVZ) discontinuity. The bending of light has been experimentally measured
and shown to be in agreement with the Einstein’s general relativity, thus apparently ruling out the
Fiertz-Pauli model. The conclusion was that the graviton mass has to be strictlyzero.

The status of the graviton mass seemed clear until it was noticed [29] that the discontinuity
argument leading to the contradiction with the experiment has a loophole. The light bending in the
massive case was calculated within the linear approximation, while the model is actually non-linear
at the relevant scale. It was shown that the onset of the non-linear regime at non-zero graviton mass
happens at much larger distances from the source than one would naively expect. What precisely
is the corresponding distance scale may depend on the non-linear terms in theaction [30], but this
scale cannot be made short enough. Another manifestation of the same phenomenon is the strong
coupling between longitudinal polarizations of massive gravitons which setsin at unacceptably low
energies [31].

A new approach to the modification of gravity has been developed recently which involves the
spontaneous breaking of the Lorentz symmetry. The first model of this typeis the so-called ghost
condensate model [32]. Although the graviton is massless in this model, we will show that it can
be generalized in such a way that the graviton gets a mass, while the problems mentioned above
do not arise. One gets, therefore, a consistent theory which is well-defined below a certain scale
and in which the Lorentz symmetry is spontaneously broken, the graviton is massive and obvious
pathologies are absent. We will argue below that this theory is a perfect theoretical laboratory for
studying modifications of gravity and may even be interesting from the phenomenological point of
view.

Before we proceed to the discussion of this low-energy effective theory, an important remark is
in orded. The model which we will consider in these lectures is a low-energyeffective theory which
presumably arises from some fundamental theory in the low-energy regime.However, no such
fundamental theory (the UV-completion) has been constructed so far. Moreover, neither uniqueness
nor even existence of the UV-completion is guaranteeda priori. Finding such a UV-completion
remains the major unsolved problem of models with the large-scale modifications of gravity. We
will not discuss this problem in more detail here.

The outline of these lectures is as follows. We start in Sect. 2 by discussing the generic ob-
structions to massive gravity. In Sect. 3 we outline the ways to overcome the difficulties and present
a class of models where these ideas are realized and the graviton is made massive. We investigate
this class of models at the liner level in Sect. 4. Sec. 5 deals with some phenomenological con-
sequences of the graviton mass in a concrete model. In particular, the cosmological solutions are
considered. Finally, in Sect. 6 we summarize the results and outline the open questions.
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2. Theoretical obstructions to massive gravity

Let us discuss in more detail the origin of the problems which arise when one tries to mod-
ify the general relativity in such a way that the graviton gets a mass. These problems are: the
appearance of ghosts, the vDVZ discontinuity and the strong coupling at alow energy scale.

Instabilities and ghosts. There may occur several types of instabilities. In the simplest case of a
single variableφ the quadratic action has the form

∫

d4x
(

αφ̇2−β (∂iφ)2−m2φ2) ,

whereα , β andm2 are some real coefficients. We do not assume here the Lorentz invariance which
would requireα = β . The equation of motion for the variableφ in the Fourier space reads

αφ̈ +βk2
i φ +m2φ = 0. (2.1)

One usually hasα > 0, β > 0, m2 > 0 and the solution to eq. (2.1) is oscillatory. This is the
“normal” case which corresponds to usual particles.

If α > 0 butβk2+m2 < 0 for somek, then the solutions to eq. (2.1) are exponentially decaying
or growing, so the instability is present. Two cases should be distinguished.If β > 0 then fork >
√

|m2|/β the instability disappears. If this critical value ofk is very low, there may be not enough
time for the instability to develop. Thus, this kind of instability is not necessarily a pathology. On
the contrary, ifβ < 0, then the instability persists at an arbitrary largek and is therefore arbitrarily
rapid. Instabilities of this type are unacceptable.

Finally, if α < 0 then the contribution of the kinetic termαφ̇2 into the energy is negative and
unbounded from below. This is physically unacceptable unless the fieldφ is completely decoupled
from the rest of the system, which is an unrealistic situation. Note that ifα < 0 andβk2 +m2 < 0
at the same time, the solutions to eq. (2.1) oscillate, so the pathology does not show up in the
equations of motion. However, both the kinetic and the potential term have negative energy. The
field of this type is referred to as ghost.

The requirement of the absence of ghosts and instabilities is routinely used infield theory. It
allows, for instance, to fix uniquely the conventional gauge-invariant form of the Lagrangian of the
massless vector field,−1/4FµνFµν . This latter observation may be used to see very easily that
there is only one Lorentz-invariant graviton mass term which gives a theory free from instabilities
and ghosts. Indeed, consider a quadratic Lagrangian for the metric perturbationhµν around the flat
Minkowski space and add all possible Lorentz-invariant mass terms,

∫

d4x
{

L(2)(hµν)+αh2
µν +β (hµ

µ)2
}

. (2.2)

The first term in eq. (2.2) is just the standard kinetic term which comes from the Einstein action
∫ √

gRand describes massless gravitational waves. Its precise form is not important for the argu-
ment. The second and third terms are the only possible Lorentz-invariant combinations which are
quadratic inhµν and do not contain derivatives.

Let us see why only atβ = −α the action (2.2) describes a non-pathological theory. To this
end consider aparticular metric perturbation,

hµν = ∂µξν +∂νξµ . (2.3)
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This form of the metric perturbation corresponds to a “pure gauge”, as eq.(2.3) is precisely the
coordinate transformation at the linear level. Like in the case of the gauge theory, one may show
that in the presence of the mass terms the longitudinal perturbations dominate athigh momenta.

Inserting eq. (2.3) into the action (2.2) we see that only the mass terms (the second and third
terms) contribute (recall that the Hilbert-Einstein part of the action is gauge-invariant). Thus, we
find

∫

d4x
{

2α(∂µξν)2 +(2α +4β )(∂µξ µ)2} .

This is a general Lorentz-invariant action for the vector fieldξµ . As is well known from the field
theory, this action describes a consistent model only when it is proportional to (∂µξν − ∂νξµ)2,
which leads to the conditionβ +α = 0. Settingα = −β = −µ2 < 0 one arrives at the Fiertz-Pauli
model of massive gravity.

vDVZ discontinuity. Let us now see that the Fierz-Pauli model predicts the bending of light by
massive bodies which is different from GR even in the limit of zero mass. We need to compare
the interactions of a given mass with a massive test particle and with the photon inGR and in the
Fierz-Pauli model. In the language of quantum field theory these interactions are proportional to
the amplitude of the one-graviton exchange which in turn is proportional to thegraviton propagator.
To be more precise, the quantity which determines the interaction is the contraction of the graviton
propagator with the energy-momentum tensors of the source and the test particle. The graviton
propagator in both massive and massless cases has the form

Pµνλρ =
∑i e

i
µνei

λρ

p2−m2 , (2.4)

where the sum runs over all “polarization tensors”ei
µν . In the massive case there are 5 such tensors.

In the rest frame of a (massive) graviton they have the following form:

√
2

3











0 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 −1











,
1√
2











0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0











,

1√
2











0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0











,
1√
2











0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0











,
1√
2











0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0











, (2.5)

while in the massless case there are only two polarization tensors which can bewritten as follows
(in the frame where the vector~p is parallel to thezaxis),

1√
2











0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0











,
1√
2











0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0











. (2.6)
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Note that two of these tensors are the same as in the massive case. The substitution of the polariza-
tion tensors into eq. (2.4) gives the following graviton propagators,

Pm6=0
µνλρ =

1
p2−m2

{

1
2

ηµλ ηνρ +
1
2

ηµρηνλ − 1
3

ηµνηλρ

+(p-dependent terms)

}

,

Pm=0
µνλρ =

1
p2

{

1
2

ηµλ ηνρ +
1
2

ηµρηνλ − 1
2

ηµνηλρ

+(p-dependent terms)

}

.

The terms containingp are of no interest since the propagator is contracted with the conserved
energy-momentum tensor and these terms give no contribution.

The crucial difference between the two cases is the coefficient in frontof the termηµνηλρ
which couples to the trace of the energy-momentum tensor. This differencedoes not vanish in the
zero mass limit. Clearly, it is due to a different number of graviton polarizationsin the massive and
massless cases, as can be seen by comparing eqs. (2.5) and (2.6).

Normalizing the interaction with the test massive particle to the observed value, one can predict
the bending of light in both cases. It turns out that the predictions are different. To see this let
us denote the gravitational interaction constant asG and G̃ in the massless and massive cases,
respectively. In the two cases the interaction between the non-relativistic masses is proportional to
the following combinations,

massless case:GTµν Pm=0
µνλρ T ′

λρ =
1
2

GT00T
′
00

1
p2 ,

massive case: G̃Tµν Pm6=0
µνλρ T ′

λρ =
2
3

G̃T00T
′
00

1
p2−m2 .

This implies in the small mass limit that

G̃ =
3
4

G. (2.7)

In the case of the light bending by a non-relativistic mass the third term in the propagator does not
contribute because of the vanishing trace of the electromagnetic energy-momentum tensor,T ′µ

µ = 0,
and the result is the same in both cases,

massless case: GT00T
′
00

1
p2 ,

massive case: G̃T00T
′
00

1
p2−m2 .

In view of eq. (2.7) the light bending predicted in the massive theory in the limit of the vanishing
graviton mass is 3/4 of that predicted in general relativity. Thus, there exists a discontinuity inthe
limit when the graviton mass goes to zero.

6



P
o
S
(
c
a
r
g
e
s
e
)
0
1
1

Massive gravity P. Tinyakov

The low-scale strong coupling. The calculation of the gravitational potential and of the light
bending outlined above were performed in the linearized approximation where the self-interaction
of the gravitational field is neglected. In general relativity this is a good approximation at distances
which are much larger than the Schwarzschild radius of the mass producingthe gravitational field.
One may wonder whether this approximation is correct in the Feirz-Pauli massive gravity as well.
It was first noted by Vainstein [29] who considered the spherically-symmetric solutions in the
Fierz-Pauli model that for these solutions the weak-field approximation actually breaks down much
further from the source than the gravitational radius. Vainstein argued that the validity of the linear
approximation is controlled by the parameter

ε =
Rg

m4
gr5 , (2.8)

wheremg is the graviton mass andRg = 2M/MPl is the Schwarzschild radius corresponding to the
massM. Eq. (2.8) is remarkable in that the graviton mass enters in the denominator, sothat the
expansion parameter always becomes large when the mass of the graviton goes to zero.

Let us see what are the numbers. Assuming the solar system planets feel the gravitational field
of the Sun in the linear regime implies that the graviton mass should be smaller than theinverse
radius of the Pluto orbit,

mg < (40AU)−1 ∼ 3×10−20 eV. (2.9)

Then the parameterε at the Mercury orbitrM ∼ 0.3AU equals

ε ∼ 15,

so that the motion of Mercury should be strongly affected by non-linearities. However, even the
estimate (2.9) is way too optimistic. From observations of the star motion in galaxies the graviton
mass should be smaller than at least kpc−1. The parameterε at the Earth orbit around the Sun
would then beε ∼ 1025, so that the gravitational interaction would be deeply in the non-linear
regime. Thus, the problem of discontinuity is replaced by the strong couplingproblem.

By itself, the strong coupling does not mean that the theory is inconsistent withobservations.
Indeed, the arguments of Ref.[29] were reconsidered in Ref. [30] where it was argued, within the
DGP model of modified gravity, that particular non-linear effects may make thetransition to the
zero graviton mass continuous and weaken the experimental limits on the mass ofthe graviton.

From the point of view of the quantum field theory, the onset of the non-linear regime shows
up as the strong coupling at high energies. When graviton is given a mass,the contribution of the
longitudinal polarizations of the graviton to the graviton-graviton cross section grows with energy,
as has been checked by the direct calculations [31]. This leading to the strong coupling at some
energy scale. These two strong coupling phenomena — classical and quantum — are interrelated
and are manifestations of the same problem [33].

3. Constructing the Lorentz-breaking massive gravity models

Our goal now is to construct a model where the graviton is massive and which is compatible
with observations despite the problems outlined above. To be mode precise, we will require that
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the flat Minkowski space is a solution to the equations of motion, that there areno instabilities and
ghosts in perturbation theory around the flat space, there is no discontinuity in physical quantities
when the graviton mass goes to zero, and that the theory is weakly coupled below some sufficiently
high scaleΛ. We will see that all these requirements can be satisfied if one allows the Lorentz
invariance to be spontaneously broken.

To see whether such models exist at all one may consider a generic graviton mass term which
preserves rotational invariance but not necessarily the Lorentz invariance. Following Ref.[34], this
term may be written as

1
2

M2
Pl

{

m2
0h2

00+2m2
1h2

0i −m2
2h2

i j +m2
3h2

ii −2m2
4h00hii

}

, (3.1)

wheremi are 5 mass parameters which are, in general, different. The graviton mass(the mass of
the tensor perturbations) is given bym2. Clearly, the Lorentz invariance requires that only two of
the mass parameters be independent,

m2
1 = m2

2 = −α2, m2
3 = m2

4 = −β 2, m2
0 = α2 +β 2,

whereα andβ are arbitrary. The Fierz-Pauli model corresponds to the caseα2 =−β 2. It has been
shown in Ref.[34] that the choicem0 = 0 leads to a model free of ghosts, vDVZ discontinuity and
low strong coupling scale. Thus, all the above requirements may, in principle, be satisfied at the
same time. We will discuss other possible values of the parameters shortly.

The mass term (3.1) can be considered as the quadratic part of a more general action depending
on the metric components,

S=
∫

d4x
√

g
{

M2
PlR+Λ4F(gµν)+matter

}

, (3.2)

where the functionF(gµν) = F(g00,g0i ,gi j ) is assumed to preserve rotations but not necessarily
the Lorentz invariance. The scaleΛ which will eventually play the role of the cutoff of the model
is related to the graviton masses as

m2
i ∼

Λ4

M2
Pl

.

We will assume in what follows that there are no other scales in the functionF . Our purpose now
is to investigate the models with the action (3.2).

The analysis is greatly simplified by the so-called Stückelberg’s trick which consists in restor-
ing the gauge invariance by introducing auxiliary scalar fields, a sort of “inverse” Higgs mechanism.
To illustrate how this works consider an example of the (Lorentz-invariant) massive electrodynam-
ics with the action

S=
∫

d4x

{

−1
4

F2
µν +m2A2

µ

}

.

There are three degrees of freedom: two transverse polarizations of the photon, and the longitudinal
polarization. The gauge invariance is broken by the photon mass term. Let us now add a scalar
field φ in such a way as to restore the gauge invariance,

S=
∫

d4x

{

−1
4

F2
µν +m2(Aµ −∂µφ)2

}

.
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The new action is explicitly gauge-invariant under the transformations

Aµ → Aµ +∂µφ ,

φ → φ +α ,

and has the same three degrees of freedom as the original action. Moreover, one may use the gauge
transformation to setφ = 0. Then the original action is recovered. On the other hand, one may
concentrate on the “Goldstone” part of the actionm2(∂µφ)2 and recover the action for the phase
part of the Higgs field in the standardU(1) Higgs mechanism. This is this freedom of the gauge
choice which simplifies the analysis.

This trick can be generalized [33, 35] to the case of the action (3.2). The symmetries of general
relativity are four coordinate transformations

xµ → xµ +ξ µ(x).

Thus one has to introduce 4 scalar “Goldstone” fieldsφ0 andφ i . We stress that these fields are
scalars and thus must transform as scalars under the coordinate transformations. For this reason it
is not straightforward to introduce these fields into the action (3.2) in such a way that they restore
the general covariance. The job is done by the following combinations [35],

X =
1

Λ4gµν∂µφ0∂µφ0,

V i =
1

Λ4gµν∂µφ i∂µφ0,

Yi j =
1

Λ4gµν∂µφ i∂µφ j . (3.3)

The factor 1/Λ4 is introduced to make these combinations dimensionless. Thus, the general action
for the massive gravity becomes

S=
∫

d4x
√

g
{

M2
PlR+Λ4F(X,V i ,Yi j )+Lmatter

}

. (3.4)

Several remarks are in order. First, the Goldstone fields only enter the action through the
derivatives, as they should. Second, they only couple to the metric and not to the matter fields
directly, so that they do not introduce extra interactions except the modification of the gravity law.
Finally, as in our toy example, one can choose the gauge (the reference frame) in such a way that
the action (3.4) reduces to the action (3.2), as we will now show.

Before that we need to discuss one important point — the vacuum solutions inthe model (3.4).
More precisely, we have to determine under which conditions the flat spaceis the vacuum solution.
To this end let us assume that there is no ordinary matter. Then the Einstein equations derived from
the action (3.4) are

Rµν −
1
2

gµνR= M2
PlT

G
µν ,

whereTG
µν is the energy-momentum tensor of the Goldstone fields. Since the left hand side of this

equation is zero in the flat space, the right hand side should also be zero.Thus, we have to deter-
mine conditions under which the Goldstone energy-momentum tensor vanishesin the Minkowski
background.
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As usual, the calculation of the energy-momentum tensor is done by the variation of the Gold-
stone action with respect to the metric. Denote

δF ≡ FXδX +FiδV i +Fi j δYi j ,

where

δX =
1

Λ4 ∂µφ0∂νφ0δgµν ,

δV i =
1

Λ4 ∂µφ0∂νφ iδgµν ,

δYi j =
1

Λ4 ∂µφ i∂νφ jδgµν .

Making use of the definitionδS= 1/2
∫

Tµνδgµν , one finds

TG
µν = 2FX∂µφ0∂νφ0 +Fi(∂µφ0∂νφ i +∂µφ i∂νφ0)+

2Fi j ∂µφ i∂νφ j −gµνΛ4F.

The requirementTG
µν = 0 should be considered as the set of equations for the Goldstone fields. For

an arbitrary metric these equations are impossible to satisfy because there are 10 equations (which
are all in general independent) for only 4 unknowns. However, for the flat space the solution is
easy to guess. Consider the Goldstone fields of the following form,

φ0 = aΛ2t,

φ i = bΛ2xi ,

wherea andb are two unknown constants. For this ansatz the equationsTG
µν = 0 reduce to the

following two algebraicequations1,

2a2FX(a2,b2)−F(a2,b2) = 0,

2b2FY(a2,b2)−F(a2,b2) = 0, (3.5)

where we have used the notationFi j = FYδi j . Since these are two equations for two variables, in
general they have a solution. Without loss of generality we will assume in what follows that this
solution is such thata = b = 1. Thus, the vacuum in our model is

φ0 = Λ2 t,

φ i = Λ2xi . (3.6)

Note that the fields themselves do not enter the action, so there is nothing wrong with them growing
at infinity. However, since the vacuum values of these fields are space-time dependent, they break
the Lorentz symmetry. The rotational symmetry remains unbroken if the action preserves the global
rotations of the fieldsφ i with respect to the indexi. Indeed, in this case the space rotations of the

1For symmetry reasonsT0i vanishes identically, while theTi j is proportional toδi j . Thus, only two equations are
independent.
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vacuum manifold (3.6) can be compensated by the global rotations of the fields, so that of the two
rotation groups the diagonal part remains unbroken.

We can now see that the action (3.4) is equivalent to the original action (3.2). Indeed, for
an arbitrary metric we can choose the gauge in which the Goldstone fields equal to their vacuum
values (3.6) (the “unitary” gauge). Then we have

X = g00, V i = g0i , Yi j = gi j , (3.7)

so that the functionF becomes a function of the metric components as in eq. (3.2).

4. Linear perturbations

Let us discuss the behavior of the linear perturbations in the flat background. We have to
consider both perturbations of the metrichµν and perturbations of the Goldstone fieldsπµ ,

φ µ = Λ2xµ +πµ ,

gµν = ηµν +hµν .

The purpose is to show that there are neither ghosts nor instabilities present for some values of the
mass parameters.

First, let us clarify the relation between the masses entering eq. (3.1) and thefunction F in
the action (3.4). The mass term (3.1) is recovered from eq. (3.4) in the unitary gauge where the
perturbation of the Goldstone fields are zero. To calculate the mass parameters one has to expand√

gF up to the second order in metric perturbations. The zeroth order term is an irrelevant constant.
The linear terms must vanish; this is the condition that our background is a solution to the Einstein
equations. If we start with an arbitrary functionF , the vanishing of the linear terms will be equiva-
lent to the conditions (3.5) which ensure that the energy-momentum tensor ofthe Goldstone fields
is zero. Finally, the quadratic terms should be identified with the mass parameters. The overall
mass scale is already clear: assuming the functionF does not contain other scales apart fromΛ,
the masses are of the orderm2

i ∼ Λ4/M2
Pl. Carrying out the expansion one finds, for instance

m2
0 =

Λ4

M2
Pl

(

1
2

FX +FXX

)

,

m2
1 = 2

Λ4

M2
Pl

(FY +FVV),

. . .

where the subscript onF denotes the derivative with respect to the corresponding variable. An
important observation which will be useful in what follows is that if one takesthe functionF
which depends only on the two argumentsX and

Wi j = Yi j −V iV j/X, (4.1)

then one hasm2
1 = 0. This follows from the fact that bothX andWi j are invariant under the

following symmetry:

φ0 → φ0

φ i → φ i +ξ i(φ0), (4.2)
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wherexi are arbitrary functions, while the term proportional tom2
1 breaks this symmetry. As we

will discuss shortly, imposing this symmetry leads to a particularly interesting classof models.
The next question to discuss is the absence of instabilities and ghosts. As wehave already

discussed, the problem comes from the longitudinal polarizations of the graviton, i.e., from the
purely Goldstone sector. This part of the quadratic action may be obtained by substituting

hµν = ∂µπν +∂νπµ (4.3)

into the full quadratic action for perturbations. Since in general relativity the perturbation (4.3) is
a pure gauge, the Einstein part of the action does not contribute, and the only contribution comes
from the mass term which takes the form

1
2

M2
Pl

{

2m2
0(∂0π0)

2 +m2
1(∂0πi)

2 +m2
1(∂iπ0)

2 +(4m2
4−2m2

1)π0∂0∂iπi

−m2
2(∂iπ j)

2− (m2
2−2m2

3)(∂iπi)
2
}

.

We need to determine under which constraints on the masses this Lagrangian defines a consistent
model.

It is convenient to use the internalO(3)-symmetry and separate the vector and scalar represen-
tations. The fieldπ0 is a scalar underO(3), while the vectorπi can be decomposed in the transverse
and longitudinal parts,

πi = πT
i +πL

i ,

whereπT
i is transverse,

∂iπT
i = 0,

andπL
i is a divergence of a scalar,πL

i = ∂iπL/
√

−∂ 2
j . The vector and scalar sectors separate. The

Lagrangian of the vector sector reads

L(vec) =
1
2

M2
Pl

{

m2
1(∂0πT

i )2−m2
2(∂iπT

j )2} .

For the absence of pathologies it is sufficient to requirem2
1,m

2
2 > 0.

In the scalar sector the analysis proceeds in a similar way but is more involvedas one has to
deal with the coupled system of equations. Without going into details of the calculations which can
be found in Ref. [35], let us summarize the results.

• At general values of the mass parameters there are 6 propagating degrees of freedom (two
tensor, two vector and two scalar modes). One of them is necessarily eitherghost or unstable.
The consistent model arises only in special cases.

• In the casem2
0 = 0, as was found in Ref. [34], one of the scalar modes does not propagate.

Five other modes, 2 tensor, 2 vector and 1 scalar, form five polarizations of the massive
graviton. Note, however, that the masses of these modes are, in general,different. This is
the manifestation of the Lorentz symmetry breaking. There are no pathologiesin this model
provided the massesm2

1 . . .m2
4 satisfy certain inequalities [34].
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• In the casem2
2 = m2

3 one of the scalars does not propagate. As in the previous case, the
remaining 5 modes can be viewed as 5 polarizations of the massive graviton.

• Finally, in the casem2
1 = 0 none of the scalar and vector modes are dynamical, so the only

propagating degrees of freedom are the two tensor modes. These modesare massive and
have the massm2. No ghosts or instabilities are present provided the masses satisfy certain
inequalities.

There is one more important issue which has to be discussed in the context oflinear pertur-
bations. The action (3.4) is no more than the low-energy effective action. One should expect the
appearance of higher terms suppresses by the powers of the energy divided by the cutoff scaleΛ.
These terms may contain, in particular, higher derivatives of the fieldsφ0 andφi . Usually these
terms can be neglected at low energies. However, the absence of instabilities requires the fine-
tuning relations as was explained above. The violation of these fine-tuning relations may result
in instabilities even if this violation is tiny. For instance, if a dispersion relationω2 = 0 which
corresponds to a non-propagating mode acquires a correction and changes toω2 =−αk4, this may
lead to a rapid instability at sufficiently high momentum even if the coefficientα is small. So, one
has to make sure that the fine-tuning relations needed for the stability of the model can be protected
by symmetries. This is probably not the case for the phasem2

0 = 0 [35]. On the contrary, the phase
m2

1 = 0 can be protected against higher-order corrections by the symmetry

xi → xi +ξ i(t),

which is a part of the group of coordinate transformations. In terms of the Goldstone fields this is
precisely the symmetry (4.2).

This is this last case that we will consider in more detail in the remaining part of these lectures.
We will see that it has a number of other attractive features apart from being stable against higher-
order corrections.

5. Some phenomenological implications

5.1 Newton’s potential

Consider, from the phenomenological point of view, a particular class ofmodels with the
functionF of the form

F = F(X,Wi j ).

The first question which we have to address is whether — and how — the Newton’s law is modified
in these models. Thus, we have to calculate the linear response of the systemto a point-like source
of the gravitational field.

It is convenient to work in the “unitary gauge” where the Goldstone fields are set to their
vacuum values (3.6). In this gauge the remaining perturbations are the perturbations of the metric
δgµν ,

gµν = ηµν +δgµν . (5.1)
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In the notations of Ref. [36] they are parameterized as follows,

δg00 = 2ϕ ;

δg0i = Si −∂iB;

δgi j = −hi j −∂iFj −∂ jFi +2(ψδi j −∂i∂ jE),

wherehi j are the transverse and traceless tensor perturbations,Si andFi are the transverse vector
perturbations, whileϕ , ψ , B andE are the scalar perturbations.

The quadratic Lagrangian for perturbations consists of the Einstein-Hilbert term, the mass
term and the source term,

L = LEH +Lm+Ls. (5.2)

Explicitly, the Einstein-Hilbert part reads

LEH = M2
Pl

{

−1
4

hi j (∂ 2
0 −∂ 2

i )hi j −
1
2
(Si +∂0Fi)∂ 2

j (Si +∂0Fi)

+4(ϕ +∂0B−∂ 2
0 E)∂ 2

i ψ +6ψ∂ 2
0 ψ −2ψ∂ 2

i ψ
}

, (5.3)

while for the mass term one finds

M2
Pl

{

−1
4

m2
2h2

i j −
1
2

m2
2(∂iFj)

2 +m2
0ϕ2 +

(

m2
3−m2

2

)(

∂ 2
i E

)2−

−2(3m2
3−m2

2)ψ∂ 2
i E +3

(

3m2
3−m2

2

)

ψ2 +2m2
4ϕ∂ 2

i E−6m2
4ϕψ

}

. (5.4)

Note that the tensor, vector and scalar sectors do not mix, so they can be considered separately.

We also add the external sourceTµν which is assumed to be conserved,∂ µTµν = 0. The
corresponding contribution to the Lagrangian can be written as

Ls = −T00
(

ϕ +∂0B−∂ 2
0 E

)

−Tii ψ +(Si +∂0Fi)T0i +
1
2

hi j Ti j .

All the combinations of metric perturbations which enter this equation are gauge-invariant. The
one multiplyingT00,

Φ ≡ ϕ +∂0B−∂ 2
0 E,

plays the role of the Newtonian potential in the non-relativistic limit.

Tensor sector. In the tensor sector there is a single equation of the form

(−∂ 2
0 +∂ 2

i −m2
2)hi j = 0. (5.5)

This equation describes propagation of a massive gravitational wave. Note that this wave has
only two polarizations. This is, of course, only possible because of the violation of the Lorentz
invariance.
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Vector sector. The field equations in the vector sector are

−∂ 2
j (Si +∂0Fi) = −T0i , (5.6)

∂0∂ 2
j (Si +∂0Fi)+m2

2∂ 2
j Fi = ∂0T0i . (5.7)

Taking the time derivative of eq. (5.6) and adding it to eq. (5.7) gives

Fi = 0,

provided thatm2
2 6= 0. Thus, the vector sector of our model behaves in the same way as in the

Einstein theory in the gaugeFi = 0. There are no propagating vector perturbations.

Scalar sector. The field equations for the scalar perturbations are

2∂ 2
i ψ +m2

0ϕ +m2
4∂ 2

i E−3m2
4ψ =

T00

2M2
Pl

, (5.8)

2∂ 2
i Φ−2∂ 2

i ψ +6∂ 2
0 ψ −

(

3m2
3−m2

2

)

∂ 2
i E

+3
(

3m2
3−m2

2

)

ψ −3m2
4ϕ =

Tii

2M2
Pl

, (5.9)

−2∂ 2
i ∂ 2

0 ψ +
(

m2
3−m2

2

)

∂ 4
i E

−
(

3m2
3−m2

2

)

∂ 2
i ψ +m2

4∂ 2
i ϕ = −∂ 2

0 T00

2M2
Pl

, (5.10)

2∂ 2
i ∂0ψ =

∂0T00

2M2
Pl

. (5.11)

Eq. (5.11) implies

ψ =
1

∂ 2
i

T00

4M2
Pl

+ψ0(x
i), (5.12)

whereψ0(xi) is some time-independent function. From Eqs. (5.8) and (5.10) one finds

ϕ =
1
∆

{

2m2
2m2

4ψ +2(m2
3−m2

2)∂ 2
i ψ0

}

, (5.13)

∂ 2
i E =

1
∆

{

(3∆−2m2
0m2

2)ψ −2m2
4∂ 2

i ψ0
}

, (5.14)

where
∆ = m4

4−m2
0(m

2
3−m2

2).

Finally, substituting eqs. (5.12), (5.13) and (5.14) into eq. (5.9) one findsthe gauge-invariant po-
tentialΦ,

Φ =
1

∂ 2
i

T00+Tii

4M2
Pl

−3
∂ 2

0

∂ 4
i

T00

4M2
Pl

+
m2

2

∆
(3∆−2m2

0m2
2)

1

∂ 4
i

T00

4M2
Pl

+
m2

2

∆
(3∆−2m2

0m2
2)

1

∂ 2
i

ψ0 +

(

1− 2m2
2m2

4

∆

)

ψ0. (5.15)

The first two terms on the r.h.s. of eq. (5.15) are the standard contributionsof the Einstein theory,
the first becoming the Newtonian potential in the nonrelativistic limit. The third term on the r.h.s.
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is the new contribution specific to massive gravity. We will discuss this term in more detail shortly.
Finally, the terms on the second line of eq. (5.15) are also new; they are all proportional to the
time-independent integration constantψ0(xi). The value of this constant is determined by the
initial conditions. Since there are no absolutely static objects in the Universe,the value ofψ0 is not
related to the gravitational fields created by massive bodies. Thus, these terms are irrelevant for us
here.

Whenψ0 = 0, the gauge-invariant potentialsΦ andψ in differ from their analogs in the Ein-
stein theoryΦE andψE by the mass-dependent third term on the r.h.s of eq. (5.15),

ψ = ψE,

Φ = ΦE +

(

3− 2m2
0m2

2

∆

)

m2
2

∂ 4
i

T00

4M2
Pl

. (5.16)

This term vanishes if all masses uniformly go to zero, which implies the absenceof the vDVZ
discontinuity as expected. In the coordinate space this term leads to the extracontribution to the
potential which has the “confining” form, so that the whole potential becomes

Φ = GNM

(

−1
r

+ µ2r

)

, (5.17)

where

µ2 = −1
2

m2
2

(

3− 2m2
0m2

2

∆

)

. (5.18)

The growth of the second term indicates the breakdown of perturbation theory at distancesr ∼>
1/(GNMµ2).

An interesting situation arises when there is no modification of the Newtonian potential. This
may happen if

3∆−2m2
0m2

2 = 0 (5.19)

and ∆ 6= 0. In this case the static interaction between two massive bodies is described by the
standard Newtonian force proportional to 1/r2, so the deviations from the standard gravity would
not be possible to detect in the Cavendish-type experiments. Note that eq. (5.19) does not require
that the mass of the gravitonm2 is zero. Thus, in the case when the condition (5.19) is satisfied the
non-zero graviton mass coexists with the long-range force. This is yet another manifestation of the
violation of the Lorentz invariance in this model.

Since the Lorentz symmetry is broken in our model, one should expect the preferred frame
effects. These effects, related to the motion of the gravitational field source with respect to the
preferred frame, are proportional to the square of the velocity of this motion v2. However, when
obtaining eq. (5.16) we did not neglect the motion of the source, so in the linearapproximation such
effects are absent; they only arise at the non-linear level and thus contain the additional suppression
by the measure of linearity, i.e., by the gravitational potential which is in turn of orderv2 in realistic
systems. Thus, the preferred-frame effects are suppressed by the factor of the order ofv4 and can
be neglected.

The condition (5.19) can be ensured by imposing the following dilatation symmetry,

t → λ t,

xi → λ γxi , (5.20)
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whereλ is the transformation parameter andγ is a constant. Requiring the symmetry (5.19) is
equivalent to a taking a particular dependence of the functionF on its arguments,

F = F(Zi j ) (5.21)

where
Zi j ≡ XγWi j .

We will see in the next section that the model obtained in this way has a number ofphenomenolog-
ically interesting features.

5.2 Cosmological evolution

The symmetry (5.19) may seem artificial, but there is one more reason to consider models
possessing the symmetry. To understand this reason we have to discuss thecosmological solutions
in massive gravity. The action of our model is a full non-linear action of the low-energy effective
theory. Thus, we can study the non-linear gravitational fields and, in particular, the cosmology,
provided the relevant energy scale is below the cutoff scaleΛ.

The homogeneous and isotropic ansatz in the spatially-flat case reads

ds2 = dt2−a2(t)dx2
i , (5.22)

φ0 = φ(t),

φ i = Λ2xi .

For this ansatz the variableWi j takes the form

Wi j = − 1
a2 δi j ,

so the functionF becomes a function ofX and the scale factora which one can consider as two in-
dependent variables. The equations which determine the cosmological evolution are the Friedmann
equation

(

ȧ
a

)2

=
1

6M2
Pl

{

ρm+2Λ4XFX −Λ4F
}

≡ 1

6M2
Pl

{

ρm+ρ1 +ρ2

}

, (5.23)

whereρm is the energy density of the ordinary matter not including the Goldstone fields,and the
field equation forφ0,

∂t

(

a3
√

XFX

)

= 0. (5.24)

It is straightforward to solve this system of equations for any given function F(X,a). After the
integration, Eq. (5.24) gives an algebraic relation betweenX and the scale factora. The dependence
X(a) as found from Eq. (5.24) determines the behavior of the Goldstone energy densityρ1 +ρ2 as
a function ofa. This makes Eq. (5.23) a closed equation for the scale factora(t).

Rather than solving eqs. (5.23) and (5.24) (see Ref.[37] for details) letus discuss general
properties of the solutions. We are interested in solutions such thata → ∞ at late times. Let us
assume that the functionX(a) which results in the solution of eq. (5.24) asymptotes to some power
of a. Then there exists a constantγ such that the combinationXγ/a2 goes to a non-zero value as
a→ ∞. Then eq. (5.24) implies

ρ1 = const
1

a3−1/γ , (5.25)
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i.e., one of the contributions of the Goldstone fields to the energy density behaves like a matter with
the equation of statew = −1/(3γ).

By construction, we haveZi j = XγWi j → Z0δi j , whereZ0 is some constant. If we assume that
the functionF is regular in the limita→∞, then it also has to go to some constantF → F0 = F(Z0).
Thus at late times of the evolution the functionF depends on the combinationZi j = XγWi j . In other
words, this point is an attractor of the cosmological evolution. This is anotherreason to consider
the actions which depend on the Goldstone fields in the combinationZi j = XγWi j . Note that the
second contribution to the energy density behaves at late times as a cosmological constant.

5.3 Experimental signatures

Let us first discuss the experimental constraints on the graviton mass. We will concentrate on
the case of the functionsF satisfying the constraint (5.21). In this case the Newtonian potential
remains unchanged, so the existing constraints from the Cavendish-type experiments and solar
system tests [38, 39] do not apply. On the contrary, the presence of themass affects emission of the
gravitational waves. Precision observations of the slow down of the orbital motion in binary pulsar
systems [40] imply that the mass of the gravitational waves cannot be larger than the frequency of
the waves emitted by these systems. The latter is determined by the period of the orbital motion
which is of order 10 hours, implying the following limit on the graviton mass,

m2 ∼< 2×10−4Hz∼ 10−19eV∼ (1014cm)−1.

This is a very large mass in cosmological standards. It would certainly be ruled out if it implied the
Yukawa-type deviations from the Newtonian potential.

The non-zero mass of the graviton leads to interesting consequences forthe primordial gravi-
tational waves as well. The massive gravitons can be produced during thecosmological expansion.
In the expanding Universe eq. (5.5) is modified in the following way,

(−∂ 2
0 −3H∂0 +∂ 2

k /a2−m2
2)hi j = 0, (5.26)

whereH = ȧ/a is the Hubble constant. This equation is identical to the one which governs the
behavior of a massive scalar field such as axion. Thus, the massive gravitons will be efficiently
produced during inflation (cf. Ref. [41, 42]). One may estimate the amountof the gravitational
waves produced. Assuming the inflationary scenario in which the Hubble parameter is constant
(e.g., as in the hybrid models of inflation [43]), the spectrum for the massivegravitons is that for
the minimally coupled massive scalar field in the de Sitter space [44, 45, 46, 47],

〈h2
i j 〉 ≃

1
4π2

(

Hi

MPl

)2∫

dk
k

(

k
Hi

)

2m2
2

3H2

. (5.27)

Superhorizon metric fluctuations remain frozen until the Hubble factor becomes smaller than the
graviton mass, when they start to oscillate with the amplitude decreasing asa−3/2. The energy
density in massive gravitons at the beginning of oscillations is of order

ρo ∼ M2
Plm

2
2〈h2

i j 〉 ≃
3H4

i

8π2 , (5.28)
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where we integrated in Eq. (5.27) over the modes longer than the horizon. Today the fraction of
the energy density in the massive gravitational waves is, therefore,

Ωg =
ρo

z3
oρc

=
ρo

z3
eρc

(

He

Ho

)3/2

, (5.29)

wherezo is the redshift at the start of oscillations,Ho ∼ m2 is the Hubble parameter at that time,
He ≈ 0.4 ·10−12 s−1 is the Hubble parameter at the matter/radiation equality, andze ≈ 3200 is the
corresponding redshift. Combining all the factors together one gets

Ωg ∼ ·104(m2 ·1014cm)1/2
(

Hi

Λ

)4

. (5.30)

This estimate assumes that the number of e-foldings during inflation is large, lnNe > H2/m2, which
is quite natural in the model of inflation assumed. Thus, the amount of the gravitons produced at
inflation may be enough to constitute the dark matter of the Universe.

Let us estimate the amplitude of the gravitational waves assuming that they comprise all of the
dark matter in the halo of our Galaxy. The energy density in non-relativistic gravitational waves is
of orderM2

Plm
2
2h2

i j . Equating this to the local halo density one gets

〈hi j 〉 ∼ 10−10
(

2·10−4Hz
m2

)

. (5.31)

At frequencies 10−6÷10−5 Hz this value is well above the expected sensitivity of the LISA de-
tector [48]. Note that in the close frequency range 10−9 ÷ 10−7 Hz there exists a much lower
bound [49] on the stochastic background of the gravitational waves coming from the timing of the
millisecond pulsars [50, 51], which is at the level ofΩg < 10−9. Thus, it is possible that the massive
graviton as a candidate for the dark matter can be ruled out by the reanalysis of the already existing
data on the pulsar timing.

The relic graviton abundance depends on both the specific inflationary model and the details
of the (unknown) UV completion of massive gravity. Therefore, in general, massive gravitons may
not comprise the whole of the dark matter in the Universe. In that case the exclusion of the graviton
as the dark matter candidate does not necessarily rile out the model of massive gravity and massive
gravitational waves may still be present at a lower level. These gravitational waves differ from
the conventional stochastic gravitational wave background in that they are monochromatic with the
frequency equal to the graviton mass. It is important that the expected LISA sensitivity allows to
detect the presence of such gravitational waves at a significantly lower level than in Eq. (5.31).

6. Summary and outlook

Summarizing the above discussion we arrive at the following conclusions:

- Existing attempts to give graviton a mass in a Lorentz-invariant way suffer from severe prob-
lems (of which the strong coupling is the most harmless one). It is not clear atthe moment
whether one can deal with the strong coupling efficiently and construct a phenomenologically
viable Lorentz-invariant model of massive graviton.
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- The breaking of Lorentz invariance introduces enough freedom to circumvent these prob-
lems. Namely, one arrives at a variety of models which at the linear level canbe parameter-
ized by 5 graviton mass parameters. Some regions in the space of these parameters lead to a
consistent low-energy effective theories with massive gravitons.

- A particular class of models, the ones possessing the residual symmetry (4.2), has a number
of attractive features. The two transverse traceless polarizations of thegraviton are the only
propagating degrees of freedom in these models. The cosmological evolution has an attractor
point possessing the additional dilatation symmetry (5.20). In this point the two contributions
of the Goldstone fields into the energy-momentum tensor have the form of the cosmological
constant and of matter with the equation of state which depends on the parameters of the
model. The graviton masses go to finite constants during the expansion of the Universe.

- In the models possessing symmetries (4.2) and (5.20) the non-zero mass ofthe graviton
coexists with the unmodified Newtonian potential – the possibility which is due to the vi-
olation of the Lorentz invariance. This allows for relatively large masses ofthe graviton
m2 ∼< (1014cm)−1 to be phenomenologically acceptable. Massive gravitons can be produced
in sufficient amount in the early Universe and are a new candidate for thedark matter.

- The relic massive gravitons produce an easily identifiable monochromatic signal in the grav-
itational wave detectors. Among those LISA has a large potential to probe thepresence of
massive gravitational waves and to rule out graviton as a dark matter candidate.

At the same time, there remain quite a number of open questions which require further study.
Here are some of them:

- Modern cosmological observations are becoming more and more precise.In order to be in
accord with these observations any alternative theory of gravity has to successfully address
several issues, one of which is the structure formation. The first stage of this process, the
linear growth of perturbations, is straightforward to study in the massive gravity model. The
model of massive gravity considered in Sect. 5 pass this test [52]. However, the ability of the
model to reproduce other cosmological data remains to be tested.

- When solving for the linear perturbations in sect. 5 we have seen that there appears an in-
tegration constantψ0(xi). We have set this constant to zero since we were interested in the
gravitational fields of the massive bodies which are not related to this constant. In the cos-
mological context this constant is also present. Presumably it is determined dynamically and
is driven to zero at the inflationary stage, but this remains to be demonstrated.

- An interesting special caseγ = 1/3 deserves attention from another perspective. In this case
both contributionsρ1 andρ2 have the vacuum equation of statew = −1. As a result, the
acceleration rate of the late de Sitter phase is a dynamical quantity, determined by the initial
conditions in the Goldstone sector rather than by parameters of the action. This is similar
to the situation in the unimodular gravity [53] where the cosmological constant isalso a
constant of integration. Thus, the massive gravity models may shed light on thecosmological
problem.
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- It is worth studying in more detail the theories which do not possess the dilatation symmetry
(5.20). In these models the gravitational potential is modified at large distances from the
source. It is possible in principle that these models may provide an explanation of the galactic
flat rotation curves alternative to the dark matter.

- Finally, having the full non-linear action one can study non-linear solutions of the model, in
particular, black holes. The latter are of particular interest in view of the expected progress
in their experimental observations [54]. SOme progress has been already achieved in this
direction [55].
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