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Topological roots of four dimensional gravity Andrés Anabalón

1. Motivation and philosophy

A satisfactory description of nature is always accompanied by a reduced number of assump-
tions. The main difficulty to reduce the number of assumptions is that most of the times they are
difficult to identify, and even after identifying them it would be far from obvious how, in a sen-
sible way, relax them. Of course, these kind of considerations are relevant when there is at hand
a theory that has been proved to be physically sensible and self contained; something that for the
gravitational field, as described by the Einstein field equations (the convention}= c = 1 is used),

Rµv− 1
2

gµvR+Λgµv = 8πGTµv, (1.1)

has been confirmed by a series of theoretical and experimental achievements. It comprises the
advances in the comprehension of the gravitational field during the last century, beginning with
the generalization of the weak equivalence principle, the obtention of mechanically stable vacuum
solutions and its interpretation as black holes, the realization that the weak field limit not only
implies a Newtonian like attraction but also the quadrupolar, gravitational radiation (for a review
of the above subjects see [1]), the understanding of the gravitational energy (for discussion and
references see [2] and [3]) its positivity and the stability of Minkowski space-time (see [4] and
references therein). This construction, of course, has the nature on its side, supported by the exper-
imental success associated with the description of the primordial nucleosynthesis, the binary pulsar
and of the solar system tests [5].

All this evidence, indeed suggests that the identification of the minimal set of assumptions that
implies (1.1), is a physically relevant question. Luckily, mathematicians think about uniqueness
faster than physicists, and Vermeil (1917), Weyl (1922) and Cartan (1922) showed (see [6] and
references therein) that it is possible to single out the left hand side of (1.1), in every dimension, by
asking

• A rank two, symmetric tensor,

• covariant divergenceless,

• any derivative is at most of second order and the tensor is linear in them.

While the first two assumptions are motivated by what should appear at the right hand side
of the Einstein tensor, and in fact are trivial if one begins with an action principle instead of with
field equations, the third is not so. As was pointed out by Lovelock (1971) [6] it is possible to
relax linearity to quasi-linearity in the second derivatives (for a discussion of quasi-linearity in
this context see [7]). Remarkably, this relaxation still implies that in four dimensions the only
possibility are the Einstein field equations, while, in higher dimensions, gives rise to the Lovelock
series [6].

2. Interlude. Recasting Lovelock theories

A nice pattern that governs the Lovelock series is given by the generalization of the relation
between the Hilbert action and a two dimensional topological invariant. The Hilbert action is a
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non-trivial functional for the metric in all dimensions higher than two, while in two dimensions it
becomes a boundary term known as the Euler density:

SH =
c3

16πG
ζ4(M), χ2(M) =

1
4π

ζ2(M), ζD(M) =
∫

M
R
√
|g|dDx. (2.1)

The Euler characteristic,χ, (the integral of the Euler density) is a number associated to a family
of manifolds that can be related by homotopies see [8]. It exist in all dimensions, however it can
be related with differentiable, geometrical features of the manifold only if it is even dimensional,
in which case is given by

χ4 = β4

∫
δ µvλρ

αβγδ Rαβ
µvR

λδ
λρ

√
|g|d4x, χ6 = β6

∫
δ µvλρητ

αβγδσζ Rαβ
µvR

λδ
λρRσζ

ητ
√
|g|d6x

whereβD = 2
D!DVOL(SD) andVOL(SD) is the volume of the D-dimensional sphere. The pattern in

any dimension should be obvious from the above expression.
Despite the condensed notation used, is possible to note that the terms that can be added to the

Lovelock Lagrangian increase in complexity with the dimension. The tensorδ α1α2...αn
β1β2...βn

denotes the
generalized Kronecker delta, and it corresponds to the determinant

δ α1...αn
β1...βn

=

∣∣∣∣∣∣∣

δ α1
β1

.. δ α1
βn

: :: :
δ αn

β1
.. δ αn

βn

∣∣∣∣∣∣∣
. (2.2)

Thus, it is straightforward, but tedious, to explicitly write down any Lovelock term, for instance
the cubic one is proportional to [9]

2Rαβγδ RγδλvR
λv

αβ +8Rαβ
γδ Rγλ

βvR
δv

αλ +24Rαβγδ RγδβvR
v
α (2.3)

−3RRαβγδ Rαβγδ +24Rαβγδ RαγRβδ +16Rαβ RβγRγ
α −12RRαβ Rαβ +R3.

One equation is better than one thousand words, so the previous one is enough to be convinced
that a change in the notation is necessary to gain insight into the Lovelock theory. To this end it
is necessary to introduce the vielbein,ea

µ , an isomorphism between the coordinate tangent space
and the non-coordinate one1. This isomorphism allows to transform geometrical quantities from
one space to the other, it is particularly interesting since it is defined by the relationea

µeb
vηab =

gµv.Using this isomorphism, the curvature two-formRab≡ 1
2Rab

µvdxµ ∧dxv ≡ 1
2ea

αeb
β Rαβ

µvdxµ ∧
dxv,and the torsion two-formTa≡ 1

2Ta
µvdxµ ∧dxv≡ 1

2ea
γTγ

µvdxµ ∧dxvmake their appearance. They
are related by means of the spin connection,ωab ≡ ωab

µ dxµ , through the identities:Ta ≡ dea +
ωa

b ∧eb ≡ Dea, Rab≡ dωab+ ωa
c ∧ωcb, DTa = Rab∧eb. Furthermore, using the convention that

the wedge product is assumed between forms, the six dimensional Euler density turns out to be

1A nice and pedagogical discussion of the non-coordinate tangent space can be found in the last pages of chapter
seven, on Riemannian geometry, of [10].
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proportional toεabcde fRabRcdRe f. With this notation and the torsionless condition,Dea = 0, the
Lovelock Lagrangians in four, five, six dimensions can be written as

L4 = εabcd

(
α0eaebeced +α1eaebRcd

)
,

L5 = εabcde

(
α0eaebecedee+α1eaebRcdee+α2eaRbcRde

)
,

L6 = εabcde f

(
α0eaebecedee+α1eaebRcdee+α2eaRbcRde

)
ef .

Where theα ’s are dimensionful arbitrary coupling constants:α0 is proportional to the cosmo-
logical constant,α1 is related with the Newton constant while the remaining coupling constants
are related to the strength of its accompanying Lovelock term. This implies that the most general
Lovelock Lagrangian has

[
D+1

2

]
coupling constants, something that would ruin any possible inter-

pretation of it as a fundamental theory, and enlarge the cosmological constant problem: the value
of the

[
D+1

2

]
coupling constants is not protected by any symmetry argument.

3. A different proposal

The relevant phenomenology induced by the dimensional continuation of the two dimensional
Euler density, and its Lovelock generalization (for a very nice example see [11]), makes the con-
sideration of the four dimensional physics induced by the next non-trivial case, namely the six
dimensional Euler characteristic, something interesting to be considered. This relation has been
elaborated in a variety of ways [12, 13, 14, 15].

The perspective followed in [14, 15] is given by the observation that any pair of invariant
polynomials (as the Euler density itself) satisfy the Chern-Weil theorem2:

dP(F ) = 0, P(F )−P(F̄ ) = dTP(A , ¯A ), (3.1)

whereTP(A , ¯A ) is defined by equation (3.1) up to a closed form. The gauge invariant, globally-
defined expression forTP(A , ¯A ) stands for the transgression form. In5 dimensions, the trans-
gression takes the form

TP5(A , ¯A ) = 3
∫ 1

0
dt

〈(
A − ¯A

)
F n−1

t

〉
, (3.2)

whereFt ≡ dAt +AtAt , At ≡ A (1− t)+ ¯A t. Thus, the transgression form is uniquely deter-
mined by the Chern-Weil theorem. The only way which a five dimensional form would define a
four dimensional Lagrangian is if it is closed. From (3.1) it is clear that this would be the case

2From here the curvature two-formRab will be used to refer the four dimensional curvature, while theFAB

will denote the six dimensional one. ThusA,B = 0, ...,5, a,b = 0, ...,3 and the relation between the six dimen-
sional connections and curvatures, and the four dimensional ones are given byA = 1

2ωabJab+ caJa5 + baJa4 + ΦJ45,
F = 1

2(Rab + cacb− babb)Jab + [Dba + caΦ]Ja4 + [Dca + baΦ]Ja5 + [dΦ− baca]J45.The six dimensional Euler den-
sity is denoted byP(F ) = 〈FFF 〉 = 1

6εABCDEFFABFCDFEF, where the definition of the Lie algebra valued form
F = 1

2JABFAB and of the invariant tensor〈JABJCDJEF〉 = εABCDEF was used. The generatorsJAB would corre-
spond to any of the real forms ofSO(6), however the discussion will be remitted to theSO(4,2) case with signature
ηAB = (−,+,+,+,+,−).
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if ¯A = h−1A h+ h−1dh≡ A h. In this case the transgression form defines a four dimensional
Lagrangian given by a gauged Wess-Zumino-Witten (WZW ) term, invariant under the transforma-
tions

A → g−1A g+g−1dg, h→ g−1hg. (3.3)

A hint of the connection between this object and four dimensional gravity is given through the
relation

S(A0) =−κTP(A0,A
h0

0 ) = κ sinhθ0
3
2

∫

M4
εabcdb

abb
(

Rcd− 1
2

µbcbd
)

, (3.4)

A0 =
1
2

ωabJab+baJa4, h0 = eθ0J45, µ =
2+coshθ0

3
, (3.5)

where the constant group element,h0, is chosen to break theSO(4,2) symmetry down toSO(3,1)×
SO(1,1), and theSO(1,1) part is further broken by settingca = 0. The action principle is defined
up to an overall multiplicative constant,−κ.

The canonical form of the Hilbert action is recovered from (3.4) when a parameter with di-
mensions of length,l , is used to write it in terms of a dimensionless vielbeinea

µ = lba
µ , that is

related with the spacetime metric through the usual relation,ηabea
µeb

v = gµv, and the torsionless
field equation,Dea = 0, is used:

S(gµv) =
1

16πG

∫

M4
(R−2Λ)

√
|g|d4x (3.6)

Λ =
2+coshθ0

2l2

1
16πG

= κ sinhθ0
6
l2 (3.7)

Note that these relations set the Cosmological constant toΛ = 2+coshθ0
192πGκ sinhθ0

.

4. Conclusions

Indeed, the arguments given in this note, in favor of the four dimensional theory defined by the
gauged WZW, should be refined. In [15, 16] is discussed that when the same ansatz is replaced in
the field equations of the full gauged WZW theory, the Einstein field equations arise as a degener-
ated sector of it [17, 18, 19, 20]. Which implies that the open sets in the phase space of the gWZW
theory have a completely different dynamical behavior.

Moreover, it is necessary to set to zero a large number of fields to recover Einstein gravity.
If the theory here introduced is physically meaningful, or not, also depends in what is the role of
that fields, and how they couple to gravity. It is particularly interesting to note that the matter,h
fields, and the geometrical part described byA are intrinsically related. If the configurationh = 1
is considered, the field equations associated to the connection are trivially satisfied, while the field
equations associated toh determine the connection. These and other considerations are currently
under research.
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