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1. Motivations: a hierarchy problem

In the last decade, observational cosmology has provided us with a large amount of new data
about the universe we inhabit. Inflation is a very successful mechanism to reproduce some of these
data, e.g. CMB perturbations (see Burgess lectures at this school [1]). The idea is to assume a phase
of accelerated expansion, in the very early history of our universe, driven by the vacuum energy of
a scalar field, the inflaton, rolling down a potential. Fundamental questions arise naturally:

1. Which field plays the role of the inflaton?

2. Where does the inflaton potential come from?

3. How does the inflaton couple to the standard model fields?

It is clear that these questions can be addressed only in the context of a fundamental theory. In
this perspective inflation can be a bridge from very high energy (everything in between collider
energies andMpl) physics to observations. It is fair to say that the best candidate we have for a
fundamental theory of nature is String Theory (ST).

Before describing specific examples of inflation in ST, we comment on a generic difficulty
that one encounters when trying to embed inflation in a fundamental theory. Large field models
are those for which, during the (at least) 60 e-foldings of inflation, the inflaton varies by more
than one in Planckian units:∆φ & Mpl. A prominent example of this class is chaotic inflation [2]
V(φ) = 1

2m2φ2. This "simple" potential gives a good fit to the data [3] provided that the inflaton
mass is of order10−6Mpl.

Problems arise because what seems a simple potential is indeed quite unnatural. The first issue
shows up at classical level: near a minimum every potential looks likem2φ2 (for somem) as a result
of an expansion inφ/Mpl, but once we move away from it (e.g.∆φ ∼ O(100), in Planck units, to
fit the data) one would expect higher terms in theφ/Mpl expansion to become relevant.

Let us now suppose we have overcome this tree level fine tuning problem. At quantum level
new obstacles arise: radiative corrections might drastically change the shape of the tree level po-
tential. We know that the mass of a scalar field, contrary to a spinor mass, receives power law
radiative corrections. These are quadratically divergent in the cutoff (contrary to the log divergence
of spinor masses). This is an analog of the weak scale hierarchy problem involving the Higgs mass
(and similar to the cosmological constant problem).

The classical difficulty implies the need for some fine tuning of the parameters of the model
(wether or not this might be justified in terms of some "selection" principle). The quantum in-
stability or UV sensitivity seems instead to ask for a mechanism to tame the radiative corrections
(as supersymmetry does for the weak scale). Such an issue can only be addressed in the context
of a fundamental, UV finite theory. Finally an even stronger requirement would be that inflation
becomes a generic prediction of the theory and not just one among many alternative evolutions.

This goal is still far from being reached. Several models have been proposed and many of
them have, allowing for fine tuning, potentials of the slow roll type. No existing model has suc-
cessfully addressed the analog of the hierarchy problem. Therefore understanding the perturbative
corrections becomes essential to be able to check if a classically successful model remains so at
quantum level.
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Thanks to the progress in moduli stabilization [4], type IIB has become an attractive frame-
work for inflation model building. Some steps towards the understanding of string loop corrections
in this context have been made. An example which will be relevant for brane inflation are threshold
corrections to the non perturbative superpotential [5]. Other corrections involve the Kähler poten-
tial; these have been neglected in most inflationary model, basically because of the poor control
we have over them. A few known explicit results come from calculations using toroidal orbifolds
[6]. Recently a conjecture for the generalization to a Calabi Yau has been proposed [7]. Confirma-
tions come from low energy effective action calculations [8]. Using such a proposal, it would be
interesting to investigate the role of such corrections in various inflationary models.

2. Brane Inflation

In D brane models [9], the inflaton is given by the position of a D brane (an open string mode).
The potential is then given by the Coulomb interaction with an anti D brane. The most studied
model is with D3 branes in type IIB string theory. In [10] it was shown that enough e-foldings are
obtained if the D3- anti D3 are located in a warped throat. The anti D3 reaches fast its minimum at
the tip of the throat and the D3 slowly rolls down and eventually the two annihilate. This provides
an efficient reheating mechanism, by mean of which the tension of the branes is converted, after a
long cascade of decays, into standard model fields.

In fact the brane, as any massive object, backreacts on the metric. In particular the inflaton
couples (also) to the overall volume. When the volume and the other geometric moduli are fixed, i.e.
the massive oscillations around their vev are integrated out, a potential is induced for the inflaton
in the effective Wilsonian action. The analogy to the hierarchy problem previously discussed is
clear. The Coulomb potential receives large corrections [10] and becomes subleading. The inflaton
acquires a mass of order the Hubble constant which prevents slow roll inflation.

It is a natural question if there are some other effects that can compete to produce a flat poten-
tial and how much fine tuning would be required. In fact, the stabilization of the overall volume
requires the presence of a D7 branes (or D3 instantons) which indeed interacts with the D3 brane.
This effect was calculated in [5] and depends on how the D7 brane is embedded in the throat. It
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has been found that for some embeddings [11] the inflaton potential is unchanged while others [12]
give actually rise to new terms. Unfortunately none of these terms give a contribution to the mass
term, i.e. a term proportional toφ2, so that it is not possible, even with fine tuning, to cancel the
large inflaton mass induced by the mixing with the stabilized volume. The traditional Coulomb
driven brane inflation is therefore still lacking an explicit embedding in string theory.

On the other hand, for some value of the parameters (related to the uplifting) the inflaton poten-
tial shows an inflection point [12] as in the figure. Close to this point, first and second derivatives
vanish (but the potential does not) and therefore the slow roll parameters are small. The phe-
nomenology is extremely sensitive to the shape of the potential so that it is hard to make general
predictions. There are usually enough e-foldings [12], especially once the multifield dynamics is
taken into account [13]. However, in the part of the parameter space analyzed until now there seem
to be no cases with both a red tilted spectrum and the right amplitude of scalar perturbations [13].
Comments on a possible overshooting issue were given in [14].

3. Fine tuning and stringy parameters

Typically, the fine tuning in a certain model is expressed in terms of the precise values that
some effective parameters of that model have to take. However, if we want to know if such a fine
tuning is possible at all, or how probable it is, we need to work in terms of fundamental, in this case
stringy, parameters. The fine tuning becomesexplicit once we are able to give the values of the
relevant fundamental parameters, e.g. flux numbers, such that the effective parameters, e.g. moduli
vevs, take the value required by the model.

As the number of fundamental parameters can be very large, it is easier to start scanning just
a reduced set of them and see if that is enough to prove for example that a given fine tuning can be
achieved. If this is not the case we should enlarge the parmeter space that we scan and try again.
Eventually, either we find a solution or the search becomes technically too complicated and we
cannot find an explicit fine tuning.

In the following we specialize to the fine tuning of the uplifting effective parameter in the
case of brane inflation. We keep fixed all the other (effective) parameters, e.g.W0 or gs, and vary
only the RR and NSNS fluxesM andK on the three cycles in the conifold. Then we show that,
generically, explicit fine tuning with more than4% precision is hardly achieved. This means that
to get an explicit solution we need to scan a larger parameter space.

As we said, for some values of the uplifting, the potential shows an inflection point as in the
figure. For concreteness, let us suppose that the uplifting is obtained with an anti D3 brane at the
tip of the throat; i.e. we have a term in the Lagragian

2TD3h−1
0

V4/3
' 2T3e−8πK/3gsM

V4/3
≡ D

V4/3
, (3.1)

whereV is the volume of the 6d compact space,gs the string coupling,T3 the tension of a (anti) D3
brane andh0 the warp factor at the tip of the throat. Because of the quantization condition,K and
M are integers.

An inflection point is present only for fine tuned values ofD, let us call such a valueD0 [12].
We defineδ to be the maximum percent error that we can tolerate inD without spoiling inflation;
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in other words we want to find a solution (a vacuum of ST) such that the value for D lies inside the
intervalD0(1±δ ). If the spacing between two consecutive vacua (differing by one unit of flux) is
less or equal toD0δ we are sure that there is at least one solution that gives us inflation. In formulae

T3exp
(
−8π(K+1)

3gsM

)

or

T3exp
(
− 8πK

3gs(M+1)

)




' D0(1+δ ) . (3.2)

It comes out that the second is the most economical possibility, i.e. it puts a milder constraint on
the flux numbers; simple algebra leads to

M & 1
3gsδ ln

(
T3
D0

)
(3.3)

K ' 3gsM
8π ln T3

D0
. (3.4)

The important feature is that the minimum flux required is proportional to the inverse of the pre-
cision. For a numerical estimate we follow [10] and takegs = 0.1 (a smaller value requires even
larger flux numbers),T3 = 10−3 andD0 = 10−8 (the result anyway depends on the last two only
logarithmically). Now the tadpole cancellation condition is

KM =
χ
24
≤ 75852, (3.5)

where here the limit onχ comes from the largest known Euler characteristic for a Calabi Yau four-
fold [15]. Substituting3.3 into 3.5 one obtains thatδ & 0.04. This is, for example, not enough
to obtain both60 e-foldings and a red tilted spectral index of scalar perturbation. The precision
required for that is0.1%aroundD0 = 1.218×10−8 [13].

Fine tuning the vacuum energy to the measured value of the cosmological constant today
would be even much harder. The uplifting has then to cancel the potential with at leastO(40)
digits of precision requiring therefore a fantastically huge amount of fluxes. In the perspective of
[16], this difficulty arises because we are scanning only a two dimensional space of parameters,
{K,M}. Now, the way to procede is to enlarge the number of fundamental parameter to scan, for
example to let other flux values vary at the same time, which changes e.g.W0 andgs.
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