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We study the evolution of scalar perturbations in the réatiatlominated era of Randall-Sundrum
braneworld cosmology by numerically solving the couplelitlbind brane master wave equations.
We find that density perturbations with wavelengths less tharitical value (set by the bulk
curvature length) are amplified during horizon re-entryn@msely, we explicitly confirm from
simulations that the spectrum is identical to GR on largéescaAlthough this magnification is
not relevant for the cosmic microwave background or measents of large scale structure, it
may have some bearing on the formation of primordial blade$im Randall-Sundrum models.
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1. Introduction

The Randall-Sundrum (RS) braneworld model [2] postulates our observable universe is
a thin 4-dimensional hypersurface residing in 5-dimerali@mti-de Sitter (AdS) space. Ordinary
matter degrees of freedom are assumed to be confined to the, bvhile gravitational degrees of
freedom are allowed to propagate in the full 5-dimensioni#.bThe warping of AdS space allows
us to recover ordinary general relativity (GR) at distangesater than the curvature radius of the
bulk ¢. Current laboratory tests of Newton'’s law constrato be less than aroundlmm [3].

It is well known that the Friedmann equation governing thpamsion of the brane universe
differs from general relativity by a correction of ordey g, wherep is the energy density of the
brane matter and > (TeV)* is the brane tension. The magnitude of this correction define
“high-energy” regime of braneworld cosmology as the erawbe> g or equivalentlyH? > 1,
whereH is the Hubble parameter.

The equations of motion governing fluctuations of the modelfaund to differ from GR
in two principal ways at early times: First, they acquirép /o) high-energy corrections similar
to those found in the Friedmann equation. By themselved) sooections are not difficult to
deal with: they just modify the second-order ordinary défgial equations (ODES) governing
perturbations in GR. But the second type of modification isemwoblematic: perturbations on the
brane are also coupled to fluctuations of the 5-dimensiouni&l deometry, which are collectively
known as the “Kaluza Klein” (KK) degrees of freedom of the mbd’he KK modes are governed
by master partial differential equations (PDEs) definedughout the AdS bulk [4, 5]. The only
known way of solving this system of equations on all scalesitneously is by direct numerical
solution.

The purpose of the paper is to numerically solve for the bieliawf scalar perturbations in
the radiation-dominated regime of braneworld cosmologg W&k two different numerical codes
recently developed in Refs. [6, 7], which gives us the gbiii confirm the consistency of our
numeric results via two independent algorithms. We arenaltely interested in finding the matter
transfer function in the radiation era, and also deterngitire relative influence of KK and high-
energy effects on the density perturbations. Heuristicale may expect the KK modes to amplify
high-energy/small-scale density perturbations. Theomas that we know that the gravitational
force of attraction in the RS model is stronger than in GR @lescless thad [2, 8]. This implies
that modes with a physical wavelength smaller tliaduring horizon crossing will be amplified
due to the KK enhancement of the gravitational force. Howethés physical reasoning needs to
be tested with numeric simulations.

2. Scalar perturbations

It has been shown in Refs. [4, 5] that scalar-type pertushatbf the bulk geometry are gov-
erned by a single gauge invariant master vari@hld his bulk master variable satisfies the follow-

ing wave equation
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and a boundary condition on the brane
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The density contrast on the brafesatisfies the wave equation
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Here, we have defined the sound spegd- 5p/dp and the equation of state = p/p (where

p and p are the energy density and pressure of the brane fluid, riggegy; I is the entropy
perturbation of the brane matter andis the conformal time along the brane. In this paper we
assume that the matter anisotropic stress vanishes. The &HdE, the bulk wave equation (2.1)
and the boundary condition (2.2) comprise a closed set adtens forA andQ. Note that in the
low energy universe, we can neglegtp?/o?) terms. If we also se®y, = 0 we obtain the standard
4-dimensional dynamical equation fr hence, we recover GR at low energies.

3. Numeric analysisand discussion

For the rest of the paper, we will restrict ourselves to theeaa a radiation-dominated brane
with w= 1/3. We define the “*” epoch as the moment in time when a mode wakienumber
k enters the Hubble horizok,= H,a,. Another important era is the critical epoch, the tranaitio
between high and low energy regimes, witd = 1 and the radiation density has its critical value
pc/0 =/2—1. Generally speaking, we call modes wih> k. “supercritical” and modes with
k < k¢ “subcritical”. The scale defined by the critical mode in tgdauniverse corresponds, for
£=0.1mm, to a scale of 10 astronomical units (AU), which is incredibly tiny by coslmgical
standards.

In Fig. 1, we plot the predictions of GR, the 4-dimension&etive theory (where al’(p /o)
corrections to GR are retained, but the bulk effects are vechdy artificially settingQ = 0),
and the full 5-dimensional simulations for the behaviouthaf curvature perturbation on uniform
density sliceg and the density contraét for a supercritical mode. Since in any given model we
expect the primordial value of the curvature perturbatimbe fixed by inflation, it makes physical
sense to normalize the waveforms from each theory suchlthat (.« ~ (s =~ 1 for a < a..
When this is enforced we see that the effective theory ptedidarger final amplitude for the
density perturbation than GR. Furthermore, the final anmhditin the 5-dimensional simulation is
larger than both of the other theories. From this we can itlifet, as we expected, both(p /o)
and KK effects induce enhancement in the amplitude of pestions.

As in Fig. 1, let the final amplitudes of the density pertuidratvith wavenumbek be %55 (k),
Ger(K) andsr(K) for the 5-dimensional, effective and GR theories, respelsti Then, we define
enhancement factors as

Csn(K)
Cor(K)

2s(K) = Dio(K) = (3.1)
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Figure 1: A comparison of the behaviour of the curvature perturbafigleft) and the density perturbation
A (right) in the full 5-dimensional theory including KK contributie (5D), the effective 4-dimension theory
including ¢ (p/ o) corrections (eff), and ordinary general relativity (GRheTwaveforms for each theory
are normalized such thgt= 1 on superhorizon scales.

It follows that 2 (k) represents thé’(p /o) enhancement to the density perturbatisty; (k) gives
the magnification due to KK modes, whifg,; (k) gives the total 5-dimensional amplification over
the GR case. These enhancement factors are shown in thetedt pf Fig. 2. We can see that
they all increase as the scale is decreased, and that tregypatiach unity fok — 0, which means
we recover general relativity on large scales. For all wavelpers we see?,; > 2, > 1, which
implies that the amplitude magnification due to thép /o) corrections is always larger than that
due to the KK modes. Interestingly, th@-factors appear to approach asymptotically constant
values for largek.

Now we consider a transfer functidnk) that will tell us how the initial spectrum of curvature
perturbationsgziznf maps onto the spectrum of density perturbatiofs at some low energy epoch
within the radiation era characterized by the conformaktipt> .. It is customary to normalize
transfer functions such that(k; n) % 1, which leads us to the following definition

T(kn)=

9  k  17*adn)
4[H(n)a(r7)] g (32

Here,{" is the primordial value of the curvature perturbation Ap) ) is the maximum amplitude
of the density perturbation in the epoch of interest. We krtioat we recover the GR result in
the extreme small scale limit, which gives the transfer fiamcthe correct normalization. In the
righthand panel of Fig. 2, we show the transfer functionévédrfrom GR, the effective theory and
the 5-dimensional simulations. As expected, TH&; n) for each formulation match one another
on subcritical scalek < k.. However, on supercritical scales we hayg> T.; > Tgr. Our results
are robust against modifications of the initial data for datians.

The amplitude enhancement of perturbations is importasbomoving scaless 10 AU, which
are far too small to be relevant to present-day/cosmic miave background measurements of the
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Figure 2: Density perturbation enhancement factdest and transfer functiongight) from simulations,
effective theory, and general relativity. The transferdiions in the right panel are evaluated at a given
subcritical epoch in the radiation dominated era.

matter power spectrum. However, it may have an importartitgpan the formation of compact
objects such as primordial black holes and boson stars yatigh energies, i.e. the greater grav-
itational force of attraction in the early universe will ate more of these objects than in GR. We
know that the abundance of primordial black holes can betmined by big bang nucleosythe-
sis and observations of high-energy cosmic rays, so it wbaléhteresting to see if the kind of
enhancement of density perturbations predicted in thigpean be used to derive new limits on
Randall-Sundrum cosmology.
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