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1. Introduction

The Large Hadron Collider (LHC) is expected to start next year. The physics program of
the two main experiments ATLAS and CMS aims at the discovery of the last missing particle
predicted by the Standard Model – the Higgs boson – and at the search for signals of new physics
beyond the Standard Model. Common to these searches is the fact that the signal events have to be
digged out from a bulk of background events. The background events are due to Standard Model
processes, mostly QCD processes which sometimes are accompanied by additional electro-weak
bosons. Common to these searches is further the fact, that the final state is characterised by a high
number of hadronic jets or identified particles. A rough theoretical understanding of scattering
processes at hadron colliders is sketched in fig. 1. The initial protons do not take part as a single
entity in the scattering process, instead the basic constituents of the proton – partons like quarks
and gluons – enter the hard scattering process. The probability of finding a specific parton inside
the proton is described by parton distribution functions (pdf’s). The parton distribution functions
are non-perturbative objects and therefore at present cannot be calculated from theory. However,
they are universal and can be measured and extracted from one experiment and then used as input
data for other experiments. In particular, the HERA experiment at DESY contributed significantly
to our knowledge of the parton distribution functions. As a technical detail, the parton distribution
functions depend on a scale. In simplified terms, they are measured at a scale Q0, but used as input
data at a different scale Q1. In this context it is worth to note that the variation with the scale of the
parton distribution functions can be calculated within perturbation theory.

The hard scattering process can be formulated entirely in terms of the fundamental fields
(quarks, gluons, ...) of the Standard Model. It is calculable in perturbation theory. Attached to
the hard scattering process are parton showers, where the partons of the hard scattering event radi-
ate off additional collinear or soft partons. From this additional radiation originates the observed
hadronic jets, i.e. bunches of particles moving in the same direction. The parton shower increases
significantly the number of partons in the event. In principle, the parton shower is governed to a
large extend by perturbation theory. But due to our limited computational abilities we are forced
to replace the full matrix elements by approximations. These approximations are based on the
observation, that matrix elements are enhanced in soft and collinear regions.

After the parton shower, the partons convert to hadrons. Like for the parton distribution func-
tions this is non-perturbative physics. In practise, models like the string model or the cluster model
are used to mimic the formation of hadrons. If unstable hadrons are formed, they subsequently
decay.

This simplified picture of an event has to be completed with additional complications due to
the underlying event, multiple interactions and pile-ups. As the hard scattering breaks up the initial
protons, the proton remnants are not colour-neutral. The underlying event describes the interactions
of the proton remnants. Usually the underlying event will produce activity in the detector along
the beam pipe. However, it can happen that more than one pair of partons of the initial protons
undergo a hard scattering. This goes under the name of multiple interactions. Finally, there is
the possibility that more than one proton-proton scattering takes place in a single bunch crossing.
These are pile-up events.

As can be seen, the theoretical description of a single event is rather involved and requires
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Figure 1: A schematic and simplified description of an event in hadron-hadron collisions.

in particular knowledge on non-perturbative physics. As this knowledge is not available, we have
to content ourselves to models and approximations. This will limit the accuracy and precision of
theoretical predictions. Fortunately, for a specific class of observables we can do better: This is the
class of infrared-safe observables. Infrared safeness implies that the value of an observable does
not change, if additional soft or collinear particles are added to an event:

lim
r partons unresolved

On+r (p1, ..., pn+r) = On
(

p′1, ..., p′n
)

(1.1)

Here, On (p1, ..., pn) denotes the value of the observable for an event with particles with four-
momenta p1, ..., pn. Infrared-safe observables depend only mildly on showering and hadronisation
and can be calculated reliably in perturbation theory. At hadron colliders we need of course the
additional non-perturbative information on the parton distribution functions, but these quantities
have been measured and are available. The master formula for the calculation of an observable is
given by

〈O〉 = ∑
a,b

∫

dx1 fa(x1)

∫

dx2 fb(x2)
1

2K(s)
1

(2J1 +1)

1
(2J2 +1)

1
n1n2

×∑
n

∫

dφn−2O(p1, ..., pn) |An|2 . (1.2)

The various ingredients of this formula are: The parton distribution functions, i.e. the probability of
finding a parton i with momentum fraction x inside the parent hadron h are denoted by f i(x). 2K(s)
is the flux factor, equal to two times the center-of-mass energy squared of the two incoming partons.
1/(2J1 + 1)/(2J2 + 1)/n1/n2 corresponds to an averaging over the spins and colour degrees of
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Figure 2: Modelling of jets in perturbation theory. At leading-order a jet is modelled by a single parton, at
next-to-leading order either by one or two partons. At next-to-next-to-leading order a jet is modelled by one,
two or three partons.

freedom for the initial particles. The second sum is over the number of final-state particles, the
integral is over the phase space of (n− 2) final-state particles. The most important ingredient of
this formula is the matrix element squared |An|2 for n particles, (n− 2) in the final state, two in
the initial state. As can be seen from this formula, each event is weighted by the matrix element
squared.

At high energies the strong coupling is small and the matrix element can be calculated in
perturbation theory. For an observable, whose leading-order contribution in perturbation theory is
given by an n-parton amplitude, the following expansions are relevant for the calculation of the
next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) predictions:

|An|2 =
∣
∣
∣A

(0)
n

∣
∣
∣

2

︸ ︷︷ ︸

Born

+2 Re
(

A
(0)

n
∗
A

(1)
n

)

︸ ︷︷ ︸

one-loop

+2 Re
(

A
(0)

n
∗
A

(2)
n

)

+
∣
∣
∣A

(1)
n

∣
∣
∣

2

︸ ︷︷ ︸

two-loop and loop-loop

,

|An+1|2 =
∣
∣
∣A

(0)
n+1

∣
∣
∣

2

︸ ︷︷ ︸

single emission

+2 Re
(

A
(0)

n+1
∗
A

(1)
n+1

)

︸ ︷︷ ︸

loop+single emission

,

|An+2|2 =
∣
∣
∣A

(0)
n+2

∣
∣
∣

2

︸ ︷︷ ︸

double emission

. (1.3)

In this formulae A
(l)

n denotes an amplitude with n external particles and l loops. At leading-
order only the Born amplitude A

(0)
n contributes. At next-to-leading order we have in addition the

contributions from the one-loop amplitude A
(1)

n and the single emission contribution, which is
given by the Born amplitudes A

(0)
n+1 with one additional parton. These two contribution are of the

same order with respect to the power counting of the coupling. As far as the phase space for the
final-state particles is concerned, these two contributions live on different phase spaces of different
dimensions, since the single emission contribution has one additional particle in the final state. At
next-to-next-to-leading order we have to include in addition the contributions from the two-loop
amplitude and the one-loop amplitude squared, the one-loop amplitudes with a single additional
emission and the Born amplitudes with two additional emissions. Up to next-to-next-to-leading
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Figure 3: Scale-dependence of the cross-section for the process pp → t t̄ + jet. The leading-order pre-
diction shows a strong scale-dependence. The next-to-leading order prediction reduces significantly the
scale-dependence. The plot is taken from [1].

order we include the radiation of up to two additional particles. Therefore jets are modelled by
one, two or three partons. This is shown in fig. 2.

Why are the computations of higher-order corrections necessary ? The answer is that we want
to achieve a certain precision. This is illustrated by a simple example. Let us consider a pure QCD
process with three hard partons in the final state. The leading-order prediction is proportional to
α3

s . It is a well-known fact that the numerical value of the strong coupling depends on an arbitrary
scale µren, at leading order the formula reads

αs =
4π

β0 ln µ2
ren

Λ2

, β0 = 11− 2
3

N f , Λ ≈ 165 MeV for N f = 5 light flavours. (1.4)

As the choice of the scale is arbitrary, and since αs enters the leading-order prediction to the third
power, this introduces a strong scale-dependence of the theoretical prediction and therefore a large
uncertainty. The inclusion of higher-order corrections reduces this uncertainty. This is shown for
the example of tt̄ + jet production at the LHC in fig. 3. This is an example where the leading-order
prediction is proportional to α 3

s . Shown in fig. 3 is the variation of the theoretical prediction with
the scale µ . Apart from the scale entering the formula for the strong coupling, which is called the
renormalisation scale there is in addition also a scale, at which the parton distribution functions are
evaluated. The latter is called the factorisation scale. In the plot both scale have been identified,

µ = µren = µ f act . (1.5)

As can be seen, the inclusion of the next-to-leading order correction reduces significantly the scale-
dependence and clearly motivates the quest for the computation of higher-order corrections.

What are the objectives for LHC physics ? Let us now look more closely where precision
calculations are needed for LHC physics. There are three important points to mention:

• In order to predict absolute rates to a good precision, we have to know the input parameters
of a theoretical calculation to a high precision. The most important input parameters are the
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process relevant for

1. pp →VV + jet tt̄H , new physics
2. pp → H +2 jets Higgs production by vector boson fusion
3. pp → tt̄bb̄ tt̄H
4. pp → tt̄ +2 jets tt̄H
5. pp →VV bb̄ VBF → H →VV , tt̄H , new physics
6. pp →VV +2 jets VBF → H →VV
7. pp →V +3 jets various new physics signatures
8. pp →VVV SUSY

Table 1: The experimenter’s wish list at Les Houches 2005 [2]. V denotes either one of the electro-weak
bosons: photon, Z-boson or W -boson.

strong coupling αs and the parton distribution functions. These parameters can be extracted
from other experiments, for example the strong coupling can be extracted from the process
e+e− → 3 jets at LEP, the pdf’s are measured at HERA. The experimental precision has
to be matched with the corresponding precision of the theoretical calculation, requiring the
inclusion of the NNLO corrections. This in turn requires a calculation for e+e− → 3 jets
at NNLO and the computation of the three-loop splitting functions for the evolution of the
pdf’s.

• Standard candles at the LHC: For a few standard hard pp processes like the production
of W , Z, top, Higgs or jets we would like to have a precise prediction from theory, again
requiring a NNLO computation. Higgs production is of clear interest for the search of the
last undiscovered particle predicted by the Standard Model. The other standard processes are
useful to measure fundamental quantities like the W - or top-mass to a better precision or can
be used by the experimentalists to understand their detector.

• Finally one would like to have reliable predictions for multi-particle final states that occur at
high rates and form background to new physics. This implies next-to-leading order calcula-
tions. Examples for such processes have been collected in the experimenter’s wish list at Les
Houches workshop in 2005 and are shown in table 1.

What is the state-of-the-art for multi-leg processes ? It is clear that the complexity of a calcu-
lation increases with the order in perturbation theory as well as with the number of external legs.
Therefore we expect that if we go up in the order of perturbation theory the available calculations
are restricted to fewer final state particles. Let us first consider leading order calculations. At this
order there are techniques for the automated calculation of the (leading order) matrix elements
[3–10] as well as techniques for the efficient integration over phase space [11, 12]. Several com-
puter programs like Madgraph/Madevent [13–15], Sherpa/Amegic++ [16], Helac/Phegas [17, 18],
Comphep [19], Grace [20] or Alpgen [21] are available, which implement these techniques and can
be used to obtain leading order predictions for processes with a rather high number of final state
particles.

6



P
o
S
(
A
C
A
T
)
0
0
5

Multi-leg processes Stefan Weinzierl

n 2 3 4 5 6 7 8
diagrams 4 25 220 2485 34300 559405 10525900

Table 2: Number of Feynman diagrams contributing to gg → ng at tree level.

If we now consider the next order in perturbation theory, we observe that there many NLO
calculation for 2 → 2 processes at hadron colliders, but only a few for 2 → 3 processes. Fully
differential numerical programs for 2 → 3 processes exist for example for pp → 3 jets [22–24],
pp → V + 2 jets [25–29], pp → t t̄H [30, 31], pp → H + 2 jets [32–34], pp → t t̄ + jet [1] and
pp → ZZZ [35]. Of comparable complexity is the NLO calculation for the production of two vector
bosons in vector-boson-fusion [36–38]. On the other side there aren’t at present any NLO programs
for the LHC with more than 3 hard particles in the final state. NLO programs with four particles in
the final state are available for electron-positron annihilation for e+e− → 4 fermions [39, 40] and
e+e− → 4 jets [41–44]. As can be seen, for NLO computations our capabilities are already much
more restricted with respect to the number of final state particles. For processes with only two
or three final state particles tools which help with the automatisation of the computation like the
combination FeynArts, FormCalc, Looptools [45–48] or the Grace package [49] are available.

Finally, we consider NNLO calculations. Here, fully differential predictions for the LHC are
available only for a few selected 2→ 1 and 2→ 2 processes, like Drell-Yan [50], W -production [51]
or Higgs production [52–58]. For electron-positron annihilation NNLO predictions are available
for e+e− → 2 jets [59–61] and the thrust distribution [62].

What are the bottle-necks ? As can be seen from this summary of the state-of-the-art, higher-
order corrections are limited to processes with not too many particles in the final state. Let us now
look into the difficulties, which prohibit a straight-forward automatisation of the computation of
higher order corrections for processes with many particles in the final state. These difficulties can
be grouped into three categories:

• Length: Perturbative calculations lead to expressions with a huge number of terms.

• Integrals: At one-loop and beyond, the occurring integrals cannot be simply looked up in an
integral table.

• Divergences: At NLO and beyond, infrared divergences occur in intermediate stages, if
massless particles are involved.

The first complication – lengthy expressions – affects already leading-order computations. I will
discuss methods to handle this problem in section 2. The second and the third item occur for the
first time in NLO computations. They are discussed in section 3 and section 4, respectively.

2. Managing lengthy expressions

It is a well-known fact that the complexity of a calculation based on Feynman diagrams growth
factorially with the number of external particles. As an example consider the all-gluon amplitude
at tree level. Table 2 shows the number of diagrams contributing to the process gg → ng at tree
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level. All diagrams involve three- and four-gluon vertices. The Feynman rules for these vertices
blow-up the corresponding expressions even further:

= g f abc [(k3 − k2)µ gνλ +(k1 − k3)νgλ µ +(k2 − k1)λ gµν
]
,

= −ig2
[

f abe f ecd (gµλ gνρ −gµρgνλ
)
+ f ace f ebd (gµνgλρ −gµρgλν

)

+ f ade f ecb (gµν gλρ −gµλ gνρ
)]

.

(2.1)

For the computation of observables we have to square the amplitude and to sum over all spins or
helicities. For gluons we replace the polarisation sum by

∑
λ

ε∗
µ(k,λ )εν(k,λ ) = −gµν +

kµ nν +nµ kν

kn
−n2 kµ kν

(kn)2 . (2.2)

In this formula, nµ is an arbitrary four-vector. If the amplitude consists of O(N) terms, squaring
the amplitude will produce O(N2) terms. From this example it is clear, that the number of terms
in intermediate expressions of a calculation based on Feynman diagrams growth dramatically with
the number of external legs. As already mentioned, this problem occurs already at tree level.

2.1 Computer algebra

As calculations for multi-particle final states tend to involve lengthy intermediate expressions,
computer algebra has become an essential tool. In fact, particle physics is and has been a driving
force for the development of computer algebra systems. Quite a few computer algebra systems
have their roots within the high energy physics community or strong links with them: REDUCE,
SCHOONSHIP, MATHEMATICA, FORM [63] or GiNaC [64, 65], to name only a few. In most
cases the requirements on a computer-algebra system for computer-intensive symbolic calculations
in particle physics can be summarised by:

• The computer algebra system has to provide basic operations like addition, multiplication,
sorting, etc..

• Specialised code for the solution of a particular problem is usually written by the user. The
computer algebra system has to provide a convenient programming language.

• There is actually no need for a system which knows “more” than the user.

The most widely used computer algebra systems in the community are MATHEMATICA, MAPLE,
REDUCE, FORM and GiNaC. The first three are commercial programs, FORM and GiNAC are
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non-commercial and freely available1 . Below there are two small example programs in FORM and
GiNaC for the calculation of

Tr p/1 p/2 p/3 p/4 = 4(p1 · p2)(p3 · p4)−4(p1 · p3)(p2 · p4)+4(p1 · p4)(p2 · p3) . (2.3)

The example in FORM reads:

* Example program for FORM

V p1,p2,p3,p4;

L res = g_(1,p1)*g_(1,p2)*g_(1,p3)*g_(1,p4);

trace4,1;

print;

.end

GiNaC is a C++ library, which provides capabilities for symbolic calculations within the C++
programming language. The corresponding example in GiNaC reads:

#include <iostream>
#include <ginac/ginac.h>

using namespace std;
using namespace GiNaC;

int main()
{

varidx mu(symbol("mu"),4), nu(symbol("nu"),4),
rho(symbol("rho"),4), sigma(symbol("sigma"),4);

symbol p1("p1"), p2("p2"), p3("p3"), p4("p4");

ex res = dirac_gamma(mu,1)*dirac_gamma(nu,1)
*dirac_gamma(rho,1)*dirac_gamma(sigma,1)
*indexed(p1,mu.toggle_variance())*indexed(p2,nu.toggle_variance())
*indexed(p3,rho.toggle_variance())*indexed(p4,sigma.toggle_variance());

res = dirac_trace(res,1);

res = res.expand();
res = res.simplify_indexed();

cout << res << endl;
}

Computer algebra is an essential tool, but a brute force application alone will still produce
lengthy expressions, which are slow and potentially unstable, when evaluated numerically.

1FORM is available at http://www.nikhef.nl/˜form, GiNaC is available at http://www.ginac.de.
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2.2 Quantum number management

In order to keep the size of intermediate expressions under control, a divide-and-conquer strat-
egy has been proven useful: One divides the quantity to be calculated into smaller pieces and
calculates the small pieces separately. This approach is also called “quantum number manage-
ment”. One first observes that it is not necessary to square the amplitude and sum over the spins
and helicities analytically. It is sufficient to do this numerically. This avoids obtaining O(N 2) terms
from an expression with O(N) terms. The individual amplitudes have to be calculated in a helicity
or spin basis. This is discussed in section 2.2.1. The second observation is related to the fact, that
individual helicity amplitudes can be decomposed into smaller gauge-invariant pieces, called par-
tial amplitudes. This is discussed in section 2.2.2. These partial amplitudes can be calculated for a
given helicity configuration without reference to Feynman diagrams, as discussed in section 2.2.3.
Finally, for specific helicity configurations, compact formulæ are known, which are summarised
in section 2.2.4. Supersymmetric identities provide relations between amplitudes with different
particle contents, therefore only some of them need to be calculated. This is discussed in section
2.2.5.

2.2.1 Helicity amplitudes

The computation of helicity amplitudes requires the choice of a helicity (or spin) basis. This
is straightforward for massless fermions. The two-component Weyl spinors provide a convenient
basis:

|p±〉 =
1
2

(1± γ5)u(p). (2.4)

In the literature there are different notations for Weyl spinors. Apart from the bra-ket-notation
there is the notation with dotted and un-dotted indices: The relation between the two notations is
the following:

|p+〉 = pB, 〈p+ | = pȦ,

|p−〉 = pḂ, 〈p−| = pA. (2.5)

Spinor products are defined as

〈pq〉 = 〈p−|q+〉, [pq] = 〈p+ |q−〉, (2.6)

and take value in the complex numbers. It was a major break-through, when it was realised that
also gluon polarisation vectors can be expressed in terms of two-component Weyl spinors [66–71].
The polarisation vectors of external gluons can be chosen as

ε+
µ (k,q) =

〈q−|γµ |k−〉√
2〈q−|k+〉

, ε−
µ (k,q) =

〈q+ |γµ |k+〉√
2〈k + |q−〉

, (2.7)

where k is the momentum of the gluon and q is an arbitrary light-like reference momentum. The
dependence on the arbitrary reference momentum q will drop out in gauge invariant quantities. The
polarisation sum is that of an light-like axial gauge:

∑
λ=±

ελ
µ (k,q)

(

ελ
ν (k,q)

)∗
= −gµν +

kµ qν + kνqµ

k ·q . (2.8)
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Changing the reference momentum will give a term proportional to the momentum of the gluon:

ε+
µ (k,q1)− ε+

µ (k,q2) =
√

2
〈q1q2〉

〈q1k〉〈kq2〉
kµ . (2.9)

For massive fermions we can take the spinors as [72, 73]

u(±) =
1

〈p[ ∓|q±〉 (p/+m) |q±〉, ū(±) =
1

〈q∓|p[±〉〈q∓|(p/+m) ,

v(±) =
1

〈p[ ∓|q±〉 (p/−m) |q±〉, v̄(±) =
1

〈q∓|p[±〉〈q∓|(p/−m) . (2.10)

Here p[ is a light-like four vector obtained through

p[ = p− p2

2p ·qq. (2.11)

q denotes again an arbitrary light-like reference momentum and is related to the quantisation axis
of the spin for the massive fermion. In contrast to the gluon case individual amplitudes with label
+ or − will depend on the choice of the reference momentum q.

2.2.2 Colour decomposition

Throughout this article I use the normalisation

Tr T aT b =
1
2

δ ab (2.12)

for the colour matrices. Amplitudes in QCD may be decomposed into group-theoretical factors
(carrying the colour structures) multiplied by kinematic functions called partial amplitudes [74–78].
These partial amplitudes do not contain any colour information and are gauge-invariant objects. In
the pure gluonic case tree level amplitudes with n external gluons may be written in the form

An(1,2, ...,n) = gn−2 ∑
σ∈Sn/Zn

2 Tr(T aσ(1) ...T aσ(n))An (σ(1), ...,σ(n)) , (2.13)

where the sum is over all non-cyclic permutations of the external gluon legs. The quantities
An(σ(1), ...,σ(n)), called the partial amplitudes, contain the kinematic information. They are
colour-ordered, e.g. only diagrams with a particular cyclic ordering of the gluons contribute. The
colour decomposition is obtained by replacing the structure constants f abc by

i f abc = 2
[

Tr
(

T aT bT c
)

−Tr
(

T bT aT c
)]

(2.14)

which follows from
[
T a,T b

]
= i f abcT c. The resulting traces and strings of colour matrices can be

further simplified with the help of the Fierz identity :

T a
i jT

a
kl =

1
2

(

δilδ jk −
1
N

δi jδkl

)

. (2.15)

The colour decomposition for a tree amplitude with a pair of quarks is

An+2(q,1,2, ...,n, q̄) = gn ∑
Sn

(T aσ(1) ...T aσ(n))iq jq̄ An+2(q,σ(1),σ(2), ...,σ(n), q̄). (2.16)
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where the sum is over all permutations of the gluon legs. In general, the colour factors are combi-
nations of open

(T a1 ...T an)iq jq̄ (2.17)

and closed strings

Tr
(

T b1 ...T bm
)

(2.18)

of colour matrices. These building blocks form a basis in colour space. The choice of the basis for
the colour structures is not unique, and several proposals for bases can be found in the literature
[79–81]. A second useful basis is the colour-flow basis: This basis is obtained by replacing every
contraction over an index in the adjoint representation by two contractions over indices i and j in
the fundamental representation:

V aEa = V aδ abEb = V a
(

2T a
i j T

b
ji

)

Eb =
(√

2T a
i jV

a
)(√

2T b
jiE

b
)

. (2.19)

In this representation the colour decomposition of the pure gluon amplitude is given by

An(1,2, ...,n) =

(
g√
2

)n−2

∑
σ∈Sn/Zn

δiσ1 jσ2
δiσ2 jσ3

...δiσn jσ1
An (σ1, ...,σn) . (2.20)

2.2.3 Off-shell recurrence relations

Berends-Giele type recurrence relations [3, 82] build partial amplitudes from smaller building
blocks, usually called colour-ordered off-shell currents. Off-shell currents are objects with n on-
shell legs and one additional leg off-shell. Momentum conservation is satisfied. It should be noted
that off-shell currents are not gauge-invariant objects. Recurrence relations relate off-shell currents
with n legs to off-shell currents with fewer legs. The recursion starts with n = 1:

Jµ(k1) = ε µ(k1,q). (2.21)

ε µ is the polarisation vector of the gluon and q an arbitrary light-like reference momentum. The
recursive relation states that in the pure-gluon off-shell current a gluon couples to other gluons only
via the three- or four-gluon vertices :

Jµ(kλ1
1 , ...,kλn

n ) =
−i

K2
1,n

[
n−1

∑
j=1

V µνρ
3 (−K1,n,K1, j,K j+1,n)Jν(kλ1

1 , ...,kλ j
j )Jρ (kλ j+1

j+1 , ...,kλn
n )

+
n−2

∑
j=1

n−1

∑
l= j+1

V µνρσ
4 Jν(kλ1

1 , ...,kλ j
j )Jρ (kλ j+1

j+1 , ...,kλl
l )Jσ (kλl+1

l+1 , ...,kλn
n )

]

, (2.22)

where

Ki, j = ki + ki+1 + ...+ k j (2.23)

and V3 and V4 are the colour-ordered three-gluon and four-gluon vertices
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...

1n

n + 1 is off-shell

=

n−1∑

j=1

1jj + 1n

+

n−2∑

j=1

n−1∑

k=j+1

1j
j + 1k

k + 1n

Figure 4: Off-shell recurrence relation: In an off-shell current particle n+1 is kept off-shell. This allows to
express an off-shell current with n on-shell legs in terms of currents with fewer legs.

V µνρ
3 (k1,k2,k3) = i

[
gµν (kρ

1 − kρ
2

)
+gνρ (kµ

2 − kµ
3

)
+gρµ (kν

3 − kν
1 )
]
,

V µνρσ
4 = i(2gµρ gνσ −gµνgρσ −gµσ gνρ) . (2.24)

The recurrence relation is shown pictorially in fig. 4. The gluon current Jµ is conserved:
(

n

∑
i=1

kµ
i

)

Jµ = 0. (2.25)

From an off-shell current one easily recovers the on-shell amplitude by removing the extra propa-
gator, taking the leg (n+1) on-shell and contracting with the appropriate polarisation vector.

2.2.4 Parke-Taylor formulæ

The partial amplitudes have for specific helicity combinations remarkably simple analytic for-
mula or vanish altogether. For the all-gluon tree amplitude one finds

An(1+,2+, ...,n+) = 0,

An(1+,2+, ..., j−, ...,n+) = 0,

An(1+,2+, ..., j−, ...,k−, ...,n+) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉 . (2.26)

The partial amplitudes where all gluons have positive helicities, or where all gluons except one
have positive helicities vanish. The first non-vanishing result is obtained for the n-gluon amplitude
with n−2 gluons of positive helicity and 2 gluons of negative helicity. It is given by a remarkable
simple formula. Note that this formula holds for all n. An amplitude with n−2 gluons of positive
helicity and 2 gluons of negative helicity is called a maximal-helicity violating amplitude (MHV
amplitude). Obviously, we find similar formulæ if we exchange all positive and negative helicities:

An(1−,2−, ...,n−) = 0,

An(1−,2−, ..., j+, ...,n−) = 0,

An(1−,2−, ..., j+, ...,k+, ...,n−) = i
(√

2
)n−2 [k j]4

[1n][n(n−1)]...[21]
. (2.27)

These formulæ have been conjectured by Parke and Taylor [83] and have been proven by Berends
and Giele [3].
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2.2.5 Supersymmetric relations

After removing the colour factors, QCD at tree-level may be viewed as an effective supersym-
metric theory [84–88], where the quarks and the gluons form a super-multiplet (a N = 1 vector
super-multiple). Let us denote by

QSUSY = θ
(

qAQA + q̄ȦQ̄Ȧ
)

(2.28)

the SUSY generators contracted with two-component Weyl spinors qA and q̄Ȧ and multiplied by
a Grassmann number θ . In an unbroken supersymmetric theory, the supercharge annihilates the
vacuum, and therefore

〈0 |[QSUSY,Φ1Φ2...Φn]|0〉 =
n

∑
i=1

〈0 |Φ1... [QSUSY,Φi] ...Φn|0〉 = 0 (2.29)

where the field Φi denotes either a gauge boson g or a fermion Λ. The commutators are given by

[
QSUSY,g±(k)

]
= Γ±(k,q)Λ±(k),

[
QSUSY,Λ±(k)

]
= Γ∓(k,q)g±(k), (2.30)

with

Γ±(k,q) = θ〈q±|k∓〉. (2.31)

Let us now consider

0 =
〈

0
∣
∣
∣

[

Q,Λ+
1 g+

2 ...g−j ...g+
n−1g−n

]∣
∣
∣0
〉

= Γ−(p1,q)An(g+
1 ,g+

2 , ...,g−j , ...,g+
n−1,g

−
n )−Γ−(p j,q)An(Λ+

1 ,g+
2 , ...,Λ−

j , ...,g+
n−1,g

−
n )

−Γ−(pn,q)An(Λ+
1 ,g+

2 , ...,g−j , ...,g+
n−1,Λ

−
n ). (2.32)

If one further sets the reference momentum equal to q = p j and uses the expression for the max-
imally helicity violating gluon amplitudes one obtains the expression for an amplitude with a pair
of quarks:

An(q+
1 ,g+

2 , ...,g−j , ...,g+
n−1, q̄

−
n ) = i

(√
2
)n−2 〈 j1〉〈 jn〉3

〈12〉〈23〉...〈n1〉 . (2.33)

2.3 New developments: Twistor methods

In the previous section we saw that for the all-gluon tree amplitude there are remarkable simple
formulæ if almost all gluons have one helicity and not more than two gluons have the opposite
helicity. Of course we are also interested in the case, where more than two gluons have the opposite
helicity. MHV vertices, discussed in section 2.3.1, provide an answer to this question and tell
us how the complexity increases with the number of opposite helicity gluons. In addition this
construction led to new recursion relation, which no longer require that one external leg is kept
off-shell. The building blocks of these on-shell recursion relations are gauge-invariant amplitudes.
This is discussed in section 2.3.2.
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1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+ 5+ 6+

1−

2−
3−

− +

4+5+6+

1−

2−
3−

− +

4+5+6+

1−

2−
3−

− +

4+5+6+

Figure 5: MHV diagrams contributing to the tree-level six-gluon amplitude A6(1−,2−,3−,4+,5+,6+).

2.3.1 MHV vertices

As an alternative to usual Feynman graphs, tree amplitudes in Yang-Mills theory can be con-
structed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued
off shell in a particular fashion [89]. The basic building blocks are the MHV amplitudes, which
serve as new vertices:

Vn(1+, ..., j−, ...,k−, ...,n+) = i
(√

2
)n−2 〈 jk〉4

〈12〉...〈n1〉 . (2.34)

Each MHV vertex has exactly two lines carrying negative helicity and at least one line carrying
positive helicity. Each internal line has a positive helicity label on one side and a negative helicity
label on the other side. The propagator for each internal line is the propagator of a scalar particle:

i
k2 (2.35)

The expression (2.34) for the MHV vertices involves spinors corresponding to massless on-shell
momenta k2

j = 0. Therefore we have state what this light-like four-vector should be for every
internal line meeting a MHV vertex. As in eq. (2.11) the light-like four-vector can be taken as [90]

k[ = k− k2

2k ·q q, (2.36)

where k is the momentum flowing through the internal line and q is a fixed light-like reference
momentum. Let us now consider an example. The amplitude A6(1−,2−,3−,4+,5+,6+) has three
gluons of positive helicity and three gluons of negative helicity and is one of the first non-trivial
amplitudes, which are non-zero and which are not MHV amplitudes. Fig. 5 shows the six MHV
diagrams contributing to this amplitude. The first diagram yields

1−

2−
3−

− +

4+ 5+ 6+

=

[

i
√

2
〈12〉4

〈12〉〈2
(
−k[

12

)
〉〈
(
−k[

12

)
1〉

]

i
k2

12

[

i
(√

2
)3 〈3k[

12〉4

〈34〉〈45〉〈56〉〈6k[
12〉〈k[

123〉

]

, (2.37)
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1
−

2
−

3
−

4
+

5
+

6
+

+ −

2
−

3
−

4
+

5
+

6
+

1
−

+ −

Figure 6: Diagrams contributing to the tree-level six-gluon amplitude A6(1−,2−,3−,4+,5+,6+) in the on-
shell recursive approach. The vertices are on-shell amplitudes.

and similar expressions are obtained for the five other diagrams. In this expression, k12 = k1 + k2

is the momentum flowing through the internal line and k[
12 is the projection onto a light-like four-

vector as in eq. (2.36). We recall from table 2 that a brute force approach would require the
calculation of 220 Feynman diagrams. Restricting ourselves to a partial amplitude with a fixed
cyclic order reduces this number to 36 diagrams. In the approach based on MHV vertices there are
only six diagrams. In the next subsection we will discuss a method which reduces the number of
diagrams even further.

2.3.2 On-shell recursion relations

Britto, Cachazo and Feng [91] gave a recursion relation for the calculation of the n-gluon
amplitude which involves only on-shell amplitudes. To describe this method it is best not to view
the partial amplitude An as a function of the four-momenta kµ

j , but to replace each four-vector by a
pair of two-component Weyl spinors. In detail this is done as follows: Each four-vector Kµ has a
bi-spinor representation, given by

KAḂ = Kµσ µ
AḂ, Kµ =

1
2

KAḂσ̄ ḂA
µ . (2.38)

For light-like vectors this bi-spinor representation factorises into a dyad of Weyl spinors:

kµ kµ = 0 ⇔ kAḂ = kAkḂ. (2.39)

The equations (2.38) and (2.39) allow us to convert any light-like four-vector into a dyad of Weyl
spinors and vice versa. Therefore the partial amplitude An, being originally a function of the mo-
menta k j and helicities λ j, can equally be viewed as a function of the Weyl spinors k j

A, k j
Ḃ and the

helicities λ j:

An(k
λ1
1 , ...,kλn

n ) = An(k1
A,k1

Ḃ,λ1, ...,kn
A,kn

Ḃ,λn). (2.40)

Note that for an arbitrary pair of Weyl spinors, the corresponding four-vector will in general be
complex-valued. If (λn,λ1) 6= (+,−) we have the following recurrence relation:

An
(
k1

A,k1
Ḃ,λ1, ...,kn

A,kn
Ḃ,λn

)
= (2.41)

n−1

∑
j=3

∑
λ=±

A j

(

k̂1
A,k1

Ḃ,λ1,k2
A,k2

Ḃ,λ2, ...,k
j−1
A ,k j−1

Ḃ ,λ j−1, iK̂A, iK̂Ḃ,−λ
)

× i
K2

1, j−1
An− j+2

(

K̂A, K̂Ḃ,λ ,k j
A,k j

Ḃ,λ j, ...,kn−1
A ,kn−1

Ḃ ,λn−1,kn
A, k̂n

Ḃ,λn

)

.
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method diagrams
brute force approach 220
colour-ordered amplitudes 36
MHV vertices 6
on-shell recursion 2

Table 3: The number of diagrams contributing to the colour-ordered six-gluon amplitude
A6(1−,2−,3−,4+,5+,6+) using various methods.

If (λn,λ1) = (+,−) we can always cyclic permute the arguments, such that (λn,λ1) 6= (+,−). This
is possible, since on-shell amplitudes, where all gluons have the same helicity, vanish. In eq. (2.41)
the shifted spinors k̂1

A, k̂n
Ḃ, K̂A and K̂Ḃ are given by

k̂1
A = k1

A − zkn
A, K̂A =

KAḂkḂ
1

√

〈1+ |K|n+〉
,

k̂n
Ḃ = kn

Ḃ + zk1
Ḃ, K̂Ḃ =

kA
n KAḂ

√

〈1+ |K|n+〉
, (2.42)

where

KAḂ =
j−1

∑
l=1

kl
Akl

Ḃ, K2
1, j−1 = det KAḂ, and z =

K2
1, j−1

〈1+ |K|n+〉 . (2.43)

Let us again consider as an example the amplitude A6(1−,2−,3−,4+,5+,6+). The diagrams con-
tributing in the on-shell approach are shown in fig. 6. One obtains as a result for the amplitude

A6(1−,2−,3−,4+,5+,6+) =

4i
[ 〈6+ |1+2|3+〉3

[61][12]〈34〉〈45〉s126〈2+ |1+6|5+〉 +
〈4+ |5+6|1+〉3

[23][34]〈56〉〈61〉s156 〈2+ |1+6|5+〉

]

. (2.44)

Note that there only two diagrams, which need to be calculated. Table 3 shows a comparison
of the number of diagrams contributing to the colour-ordered six-gluon amplitude in the various
approaches. The performance of a numerical implementation of these new methods have been
investigated in [92, 93].

2.3.3 Proof of the on-shell recursion relations

For the proof [94–99] of the on-shell recursion relation one considers the function

A(z) = An
(
k̂1

A,k1
Ḃ,λ1, ...,kn

A, k̂n
Ḃ,λn

)
(2.45)

of one variable z, where the z-dependence enters through

k̂1
A = k1

A − zkn
A, k̂n

Ḃ = kn
Ḃ + zk1

Ḃ. (2.46)

Note that for all values of z, this is an on-shell amplitude. However, the four-momenta of par-
ticles 1 and n are in general complex. The function A(z) is a rational function of z, which has
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only simple poles in z. This follows from the Feynman rules and the factorisation properties of
amplitudes. Therefore, if A(z) vanishes for z → ∞, A(z) is given by Cauchy’s theorem as the sum
over its residues. This is just the right hand side of the recursion relation. The essential ingre-
dient for the proof is the vanishing of A(z) at z → ∞. If (λ1,λn) = (+,−) it can be shown that
each individual Feynman diagram vanishes for z → ∞. Consider the flow of the z-dependence in
a particular diagram The most dangerous contribution comes from a path, where all vertices are
three-gluon-vertices. For a path made of n propagators we have n + 1 vertices and the product of
propagators and vertices behaves therefore like z for large z. This statement remains true for a path
containing only one vertex and no propagators. The polarisation vectors for the helicity combina-
tion (λ1,λn) = (+,−) contribute a factor 1/z2, therefore the complete diagram behaves like 1/z
and vanishes therefore for z → ∞.

3. Calculating loop amplitudes

The second bottle-neck for higher-order computations are loop integrals. I first discuss one-
loop integrals in section 3.1. These are relevant for multi-leg NLO calculations, like the processes
listed in table 1. In section 3.2 I discuss techniques for two-loop amplitudes and beyond.

3.1 Automated computation of one-loop amplitudes

The simplest, but most important loop integrals are the one-loop integrals. We have a good
understanding of these integrals and I will present the main results in this section. An important
result is that any scalar integral with more than four external legs can be reduced to scalar inte-
grals with no more than 4 external legs. Therefore the set of basic one-loop integrals is rather
limited. I will discuss this reduction in section 3.1.1. For one-loop tensor integrals we can use the
Passarino-Veltman method, which reduces any tensor integral to a combination of scalar integrals.
Improvements of the Passarino-Veltman algorithm are discussed in section 3.1.2. Section 3.1.3 is
devoted to methods, which avoid Feynman diagrams.

3.1.1 Reduction to integrals with no more than four external legs

In this section we discuss the reduction of scalar integrals with more than four external legs to
a basic set of scalar one-, two-, three- and four-point functions. It is a long known fact, that higher
point scalar integrals can be expressed in terms of this basic set [100, 101], however the practical
implementation within dimensional regularisation was only worked out recently [102–106]. The
one-loop n-point functions with n ≥ 5 are always UV-finite, but they may have IR-divergences. Let
us first assume that there are no IR-divergences. Then the integral is finite and can be performed in
four dimensions. In a space of four dimensions we can have no more than four linearly independent
vectors, therefore it comes to no surprise that in an one-loop integral with five or more propagators,
one propagator can be expressed through the remaining ones. This is the basic idea for the reduction
of the higher point scalar integrals. With slight modifications it can be generalised to dimensional
regularisation. I will discuss the method for massless one-loop integrals

In = eεγE µ2ε(−1)n
∫ dDk

iπ D
2

1
k2(k− p1)2...(k− p1 − ...pn−1)2 . (3.1)
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With the notation

qi =
i

∑
j=1

p j (3.2)

one can associate two matrices S and G to the integral in eq. (3.1). The entries of the n× n kine-
matical matrix S are given by

Si j = (qi −q j)
2 , (3.3)

and the entries of the (n−1)× (n−1) Gram matrix are defined by

Gi j = 2qiq j. (3.4)

For the reduction one distinguishes three different cases: Scalar pentagons (i.e. scalar five-point
functions), scalar hexagons (scalar six-point functions) and scalar integrals with more than six
propagators.

Let us start with the pentagon. A five-point function in D = 4−2ε dimensions can be expressed
as a sum of four-point functions, where one propagator is removed, plus a five-point function in
6− 2ε dimensions [102]. Since the (6− 2ε)-dimensional pentagon is finite and comes with an
extra factor of ε in front, it does not contribute at O(ε 0). In detail we have

I5 = −2εBI6−2ε
5 −

5

∑
i=1

biI
(i)
4 = −

5

∑
i=1

biI
(i)
4 +O(ε) , (3.5)

where I6−2ε
5 denotes the (6− 2ε)-dimensional pentagon and I (i)

4 denotes the four-point function,
which is obtained from the pentagon by removing propagator i. The coefficients B and b i are
obtained from the kinematical matrix Si j as follows:

bi = ∑
j

(
S−1)

i j , B = ∑
i

bi. (3.6)

The six-point function can be expressed as a sum of five-point functions [103] without any correc-
tion of O(ε)

I6 = −
6

∑
i=1

biI
(i)
5 , bi = ∑

j

(
S−1)

i j , (3.7)

where the coefficients bi are again related to the kinematical matrix Si j . For the seven-point function
and beyond we can again express the n-point function as a sum over (n−1)-point functions [106]:

In = −
n

∑
i=1

riI
(i)
n−1. (3.8)

In contrast to eq. (3.7), the decomposition in eq. (3.8) is no longer unique. A possible set of
coefficients ri can be obtained from the singular value decomposition of the Gram matrix

Gi j =
4

∑
k=1

Uikwk
(
V T )

k j . (3.9)

as follows [107]

ri =
Vi5

W5
, 1 ≤ i ≤ n−1, rn = −

n−1

∑
j=1

r j, W5 =
1
2

n−1

∑
j=1

G j jVj5. (3.10)
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3.1.2 Improvements of the Passarino-Veltman algorithm

We now consider the reduction of tensor loop integrals (e.g. integrals, where the loop momen-
tum appears in the numerator) to a set of scalar loop integrals (e.g. integrals, where the numerator
is independent of the loop momentum). For one-loop integrals a systematic algorithm has been
first worked out by Passarino and Veltman [108]. Consider the following three-point integral

Iµν
3 =

∫ dDk
iπD/2

kµ kν

k2(k− p1)2(k− p1 − p2)2 , (3.11)

where p1 and p2 denote the external momenta. The reduction technique according to Passarino and
Veltman consists in writing Iµν

3 in the most general form in terms of form factors times external
momenta and/or the metric tensor. In our example above we would write

Iµν
3 = pµ

1 pν
1C21 + pµ

2 pν
2C22 +{pµ

1 , pν
2}C23 +gµνC24, (3.12)

where {pµ
1 , pν

2} = pµ
1 pν

2 + pµ
2 pν

1 . One then solves for the form factors C21,C22,C23 and C24 by first
contracting both sides with the external momenta pµ

1 pν
1 , pµ

2 pν
2 , {pµ

1 , pν
2} and the metric tensor gµν .

On the left-hand side the resulting scalar products between the loop momentum k µ and the external
momenta are rewritten in terms of the propagators, as for example

2p1 · k = k2 − (k− p1)
2 + p2

1. (3.13)

The first two terms of the right-hand side above cancel propagators, whereas the last term does not
involve the loop momentum anymore. The remaining step is to solve for the form-factors C2i by
inverting the matrix which one obtains on the right-hand side of equation (3.12). Due to this step
Gram determinants usually appear in the denominator of the final expression. In the example above
we would encounter the Gram determinant of the triangle

∆3 = 4

∣
∣
∣
∣
∣

p2
1 p1 · p2

p1 · p2 p2
2

∣
∣
∣
∣
∣
. (3.14)

One drawback of this algorithm is closely related to these determinants : In a phase space region
where p1 becomes collinear to p2, the Gram determinant will tend to zero, and the form factors
will take large values, with possible large cancellations among them. This makes it difficult to
set up a stable numerical program for automated evaluation of tensor loop integrals. Quite some
effort went therefore into improvements and alternatives, which avoid these instabilities. They are
centered around the following ideas:

• The use of a different reduction scheme in critical regions, based on an expansion around the
small invariants [109–112].

• Choosing a different set of basic integrals. The new set can be non-minimal. Quite often the
new basic integrals correspond to scalar integrals in higher dimensions. [107, 113–118].

• Direct numerical integration [119–124].

• The use of spinor techniques, which avoid to a certain extent the occurrence of Gram deter-
minants [125–130].
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Figure 7: Double, triple and quadruple cuts.

3.1.3 Methods based on unitarity

We know that the final answer for a one-loop amplitude in a massless gauge theory can be
written as

A(1)
n = ∑

i
ciI

(i)
2 +∑

i, j
ci jI

(i j)
3 + ∑

i, j,k
ci jkI(i jk)

4 +R. (3.15)

I2, I3 and I4 are the scalar bubble, triangle and box integral functions. In a massive theory we
would have in addition also scalar one-point functions. In a massless theory these functions are
zero within dimensional regularisation. Note that there are no integral functions with more than
four internal propagators. These higher-point functions can always be reduced to the set above,
as we have seen in section 3.1.1. R is called the rational term. The set of all occurring integral
functions

F = {I(i)
2 , I(i j)

3 , I(i jk)
4 } (3.16)

is rather easily obtained from pinching in all possible ways internal propagators in all occurring
diagrams. We can assume that we know this set in advance. To compute the amplitude requires
therefore the determination of the coefficients ci, ci, j , ci, j,k and the rational term R. In eq. (3.15)
any ε-dependence of the coefficients has been removed. The original ε-dependent parts of the
coefficients, which are multiplied with poles from the integral functions are collected in the rational
term R. Within the unitarity-based methods one calculates the coefficients and the rational term
without resorting to a Feynman diagram calculation.

The original formulation of the method [131, 132] is based on the observation that the basic
integral functions contain logarithms and dilogarithms, which develop imaginary parts in certain
regions of phase space, for example

Im ln
(−s− i0
−t − i0

)

= −π [θ(s)−θ(t)] ,

Im Li2

(

1− (−s− i0)

(−t − i0)

)

= − ln
(

1− s
t

)

Im ln
(−s− i0
−t − i0

)

. (3.17)

Knowing the imaginary parts, one can reconstruct uniquely the corresponding integral functions.
In general there will be imaginary parts corresponding to different channels (e.g. to the different
possibilities to cut a one-loop diagram into two parts). The imaginary part in one channel of a
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one-loop amplitude can be obtained via unitarity from a phase space integral over two tree-level
amplitudes. With the help of the Cutkosky rules we have

Im A(1) = Im
∫ dDk

(2π)D
1
k2

1

1
k2

2
A(0)

L A(0)
R . (3.18)

A(1) is the one-loop amplitude under consideration, A(0)
L and A(0)

R are tree-level amplitudes appear-
ing on the left and right side of the cut in a given channel, as shown in the first picture of fig. 7.
Lifting eq. (3.18) one obtains

A(1) =
∫ dDk

(2π)D
1
k2

1

1
k2

2
A(0)

L A(0)
R + cut free pieces, (3.19)

where “cut free pieces” denote contributions which do not develop an imaginary part in this partic-
ular channel. By evaluating the cut, one determines the coefficients of the integral functions, which
have an imaginary part in this channel. Iterating over all possible cuts, one finds all coefficients.
One advantage of a cut-based calculation is that one starts with tree amplitudes on both sides of
the cut, which are already sums of Feynman diagrams. Therefore cancellations and simplifica-
tions, which usually occur between various diagrams, can already be performed before we start
the calculation of the loop amplitude. This technique was used in the calculation of the one-loop
amplitudes for e+e− → 4 partons [133, 134]. The rational part R can be obtained by calculating
higher order terms in ε within the cut-based method. At one-loop order an arbitrary scale µ 2ε is in-
troduced in order to keep the coupling dimensionless. In a massless theory the factor µ 2ε is always
accompanied by some kinematical invariant s−ε for dimensional reasons. If we write symbolically

Aloop =
1
ε2 c2

(
s2

µ2

)−ε
+

1
ε

c1

(
s1

µ2

)−ε
+ c0

(
s0

µ2

)−ε
, (3.20)

the cut-free pieces c0(s0/µ2)−ε can be detected at order ε :

c0

(
s0

µ2

)−ε
= c0 − εc0 ln

(
s0

µ2

)

+O(ε2). (3.21)

With the advent of the new methods based on twistors, significant improvements were added to
the unitarity-based technique [135–152]. Apart from the two-particle cut discussed above, one can
also consider triple or quadruple cuts as shown in fig. 7. A particular nice result follows from
quadruple cuts [135]: The coefficients of the box integral functions are given as a product of four
tree amplitudes, summed over the two solutions of the on-shell conditions

l2
1 = l2

2 = l2
3 = l2

4 = 0. (3.22)

Unitarity-based methods contributed significantly to the calculation of the one-loop six-gluon am-
plitude [131, 132, 136–140, 143, 145–147, 153–157] and the one-loop six-photon amplitude [152,
158–161].
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3.2 Two-loop amplitudes and beyond

For NNLO calculation two-loop amplitudes are required. The relevant two-loop integrals
are far from trivial. In this section I review a few techniques which can used for the calculation
of two-loop integrals. The Mellin-Barnes transformation is discussed in section 3.2.1. Multiple
polylogarithms together with their algebraic properties are introduced in section 3.2.2. Section
3.2.3 is devoted to sector decomposition. Not treated in detail, but equally important are methods
which reduce the work-load: Integration-by-parts identities [162] have a long-standing tradition.
In addition there are the reduction algorithms of Tarasov [163, 164] and Laporta [165], which
can be used to relate all tensor integrals to a set of basic scalar integrals. With the help of these
techniques many two-loop amplitudes have been calculated: Bhabha scattering [166], pp → 2 jets
[167–173], e+e− → 3 jets [174–176] and Higgs production [177, 178]. In addition, the three-loop
splitting functions, required for the evolution of parton distribution functions at NNLO, have been
calculated [179, 180].

3.2.1 The Mellin-Barnes transformation

The Mellin-Barnes transformation can be used to transform any Feynman parameter integral
into a particular simple form, such that the integrals over the Feynman parameters can be per-
formed:

1∫

0

(
n

∏
j=1

dx j xν j−1
j

)

δ (1−
n

∑
i=1

xi) =

n
∏
j=1

Γ(ν j)

Γ(ν1 + ...+νn)
. (3.23)

The Mellin-Barnes transformation reads

(A1 +A2 + ...+An)
−c =

1
Γ(c)

1

(2πi)n−1

i∞∫

−i∞

dσ1...

i∞∫

−i∞

dσn−1 (3.24)

×Γ(−σ1)...Γ(−σn−1)Γ(σ1 + ...+σn−1 + c) Aσ1
1 ...Aσn−1

n−1 A−σ1−...−σn−1−c
n

Each contour is such that the poles of Γ(−σ) are to the right and the poles of Γ(σ + c) are to
the left. This transformation can be used to convert any Feynman parameter integral to the form
of eq. (3.23). Therefore we exchange the Feynman parameter integrals against multiple complex
contour integrals. As this transformation converts sums into products it is the “inverse” of Feynman
parametrisation. The contour integrals are then performed by closing the contour at infinity and
summing up all residues which lie inside the contour. Here it is useful to know the residues of the
Gamma function:

res (Γ(σ +a),σ = −a−n) =
(−1)n

n!
, res (Γ(−σ +a),σ = a+n) = − (−1)n

n!
. (3.25)

Therefore we obtain (multiple) sum over residues. Techniques to manipulate these sums are dis-
cussed in the next section. In particular simple cases the contour integrals can be performed in
closed form with the help of two lemmas of Barnes. Barnes first lemma states that

1
2πi

i∞∫

−i∞

dσΓ(a+σ)Γ(b+σ)Γ(c−σ)Γ(d−σ) =
Γ(a+ c)Γ(a+d)Γ(b+ c)Γ(b+d)

Γ(a+b+ c+d)
,

(3.26)
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if none of the poles of Γ(a+σ)Γ(b+σ) coincides with the ones from Γ(c−σ)Γ(d −σ). Barnes
second lemma reads

1
2πi

i∞∫

−i∞

dσ
Γ(a+σ)Γ(b+σ)Γ(c+σ)Γ(d−σ)Γ(e−σ)

Γ(a+b+ c+d + e+σ)

=
Γ(a+d)Γ(b+d)Γ(c+d)Γ(a+ e)Γ(b+ e)Γ(c+ e)
Γ(a+b+d + e)Γ(a+ c+d + e)Γ(b+ c+d + e)

. (3.27)

Although the Mellin-Barnes transformation has been known for a long time, the method has seen
a revival in applications in recent years [181–196].

3.2.2 Multiple polylogarithms

The multiple polylogarithms are defined by

Lim1,...,mk (x1, ...,xk) = ∑
i1>i2>...>ik>0

xi1
1

i1m1
. . .

xik
k

ikmk
. (3.28)

The multiple polylogarithms are generalisations of the classical polylogarithms Lin(x) whose most
prominent examples are

Li1(x) =
∞

∑
i1=1

xi1

i1
= − ln(1− x), Li2(x) =

∞

∑
i1=1

xi1

i21
, (3.29)

as well as Nielsen’s generalised polylogarithms

Sn,p(x) = Lin+1,1,...,1(x,1, ...,1
︸ ︷︷ ︸

p−1

), (3.30)

and the harmonic polylogarithms

Hm1,...,mk (x) = Lim1,...,mk (x,1, ...,1
︸ ︷︷ ︸

k−1

). (3.31)

Multiple polylogarithms and the closely related harmonic sums have been studied extensively in
the literature [197–214].

In addition, multiple polylogarithms have an integral representation. To discuss the integral
representation it is convenient to introduce for zk 6= 0 the following functions

G(z1, ...,zk;y) =

y∫

0

dt1
t1 − z1

t1∫

0

dt2
t2 − z2

...

tk−1∫

0

dtk
tk − zk

. (3.32)

In this definition one variable is redundant due to the following scaling relation:

G(z1, ...,zk;y) = G(xz1, ...,xzk ;xy) (3.33)

To relate the multiple polylogarithms to the functions G it is convenient to introduce the following
short-hand notation:

Gm1,...,mk (z1, ...,zk;y) = G(0, ...,0
︸ ︷︷ ︸

m1−1

,z1, ...,zk−1,0...,0
︸ ︷︷ ︸

mk−1

,zk;y) (3.34)
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-

6

i1

j1

=

-

6

i1

j1

+

-

6

i1

j1

+

-

6

i1

j1

Figure 8: Sketch of the proof for the quasi-shuffle product of nested sums. The sum over the square is
replaced by the sum over the three regions on the r.h.s.

-

6

t1

t2

=

-

6

t1

t2

+

-

6

t1

t2

Figure 9: Sketch of the proof for the shuffle product of two iterated integrals. The integral over the square
is replaced by two integrals over the upper and lower triangle.

Here, all z j for j = 1, ...,k are assumed to be non-zero. One then finds

Lim1,...,mk (x1, ...,xk) = (−1)kGm1,...,mk

(
1
x1

,
1

x1x2
, ...,

1
x1...xk

;1
)

. (3.35)

Eq. (3.35) together with (3.34) and (3.32) defines an integral representation for the multiple poly-
logarithms. Multiple polylogarithms form two (independent) algebras. As a consequence, products
of multiple polylogarithms can again be expressed as sums of single polylogarithms. To give an
example, one has

Lim1(x1)Lim2(x2) = Lim1,m2(x1,x2)+Lim2,m1(x2,x1)+Lim1+m2(x1x2),

G(z1;y)G(z2;y) = G(z1,z2;y)+G(z2,z1;y). (3.36)

The first relation is based on the representation in terms of nested sums. A sketch of the proof is
shown in fig. 8. The second relation is based on the integral representation. The corresponding
sketch of the proof is shown in fig. 9. These algebraic properties allow automated manipulations of
expressions related to multiple polylogarithms by computer algebra programs. Several programs
are available [202, 215–218].

Up to now we treated multiple polylogarithms from an algebraic point of view. Equally im-
portant are the analytical properties, which are needed for an efficient numerical evaluation. As an
example I first discuss the numerical evaluation of the dilogarithm [219]:

Li2(x) = −
x∫

0

dt
ln(1− t)

t
=

∞

∑
n=1

xn

n2 (3.37)
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x1

x2

1

1

Figure 10: Sector decomposition splits the integration over the large triangle x1 + x2 < 1 into the sectors
x1 > x2 and x2 > x1.

The power series expansion can be evaluated numerically, provided |x| < 1. Using the functional
equations

Li2(x) = −Li2

(
1
x

)

− π2

6
− 1

2
(ln(−x))2 ,

Li2(x) = −Li2(1− x)+
π2

6
− ln(x) ln(1− x). (3.38)

any argument of the dilogarithm can be mapped into the region |x| ≤ 1 and −1 ≤ Re(x) ≤ 1/2. The
numerical computation can be accelerated by using an expansion in [− ln(1− x)] and the Bernoulli
numbers Bi:

Li2(x) =
∞

∑
i=0

Bi

(i+1)!
(− ln(1− x))i+1 . (3.39)

The generalisation for the numerical evaluation of multiple polylogarithms has been worked out
in [211].

3.2.3 Sector decomposition

In this section I will discuss an algorithm, which allows to compute numerically the coeffi-
cients of the Laurent expansion for a multi-loop integral for a given kinematical configuration of
external momenta. The major challenge such an algorithm has to face is the disentanglement of
overlapping singularities. An example for an overlapping singularity is given by

∫

d3x δ

(

1−
3

∑
i=1

xi

)

x−1−ε
1 x−1−ε

2
x1 + x2

. (3.40)

The term 1/(x1 +x2) is an overlapping singularity. Sector decomposition [220–222] is a convenient
tool to disentangle overlapping singularities. For the example in eq. (3.40) one splits the integration
region into two sectors x1 > x2 and x1 < x2. This is shown in fig. 10 In the first sector one
rescales x2 as x′2 = x2/x1, while in the second sector one rescales x′1 = x1/x2. By applying the
sector decomposition iteratively, one finally arrives at a form where all singularities are factorised
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Figure 11: Cancellation of infrared divergences between virtual corrections and real corrections.

explicitly in terms of factors of Feynman parameters like x−1−ε
j . Subtractions of the form

1∫

0

dx j x−1−ε
j f (x j) = −1

ε
f (0)+

1∫

0

dx j x−1−ε
j [ f (x j)− f (0)] (3.41)

for each j, where limx j→0 f (x j) is finite by construction, allow to extract all poles and lead to
integrals which are finite and can be integrated numerically.

4. Cancellation of infrared divergences

Infrared divergences occur at next-to-leading order and beyond. At NLO real and virtual cor-
rections contribute. The virtual corrections contain the loop integrals and can have, in addition
to ultraviolet divergences, infrared divergences. If loop amplitudes are calculated in dimensional
regularisation, the IR divergences manifest themselves as explicit poles in the dimensional regu-
larisation parameter ε = 2−D/2. These poles cancel with similar poles arising from amplitudes
with additional partons but less internal loops, when integrated over phase space regions where
two (or more) partons become “close” to each other. This is illustrated in fig. 11. In general, the
Kinoshita-Lee-Nauenberg theorem [223, 224] guarantees that any infrared-safe observable, when
summed over all states degenerate according to some resolution criteria, will be finite. However, the
cancellation occurs only after the integration over the unresolved phase space has been performed
and prevents thus a naive Monte Carlo approach for a fully exclusive calculation. It is therefore
necessary to cancel first analytically all infrared divergences and to use Monte Carlo methods only
after this step has been performed.

4.1 Infrared divergences at NLO

At NLO, general methods to circumvent this problem are known. This is possible due to the
universality of the singular behaviour of the amplitudes in soft and collinear limits. Examples are
the phase-space slicing method [225–227] and the subtraction method [228–232]. It is worth to
examine a simple NLO example in detail to understand the basic concepts. We consider the NLO
corrections to γ∗ → 2 jets. The real corrections are given by the matrix element for γ ∗ → qgq̄ and
read, up to colour and coupling factors

|A3|2 = 8(1− ε)

[
2

x1x2
− 2

x1
− 2

x2
+(1− ε)

x2

x1
+(1− ε)

x1

x2
−2ε

]

, (4.1)
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where x1 = s12/s123 and x2 = s23/s123. This term is integrated over the three particle phase space.
Singularities occur at the boundaries of the integration region at x1 = 0 and x2 = 0. Within the
subtraction method one subtracts a suitable approximation term dσ A from the real corrections
dσ R. This approximation term must have the same singularity structure as the real corrections. If
in addition the approximation term is simple enough, such that it can be integrated analytically over
a one-parton subspace, then the result can be added back to the virtual corrections dσ V .

σ NLO =

∫

n+1

dσ R +

∫

n

dσV =

∫

n+1

(
dσ R −dσ A)+

∫

n



dσV +

∫

1

dσ A



 . (4.2)

Since by definition dσ A has the same singular behaviour as dσ R, dσ A acts as a local counter-term
and the combination (dσ R − dσ A) is integrable and can be evaluated numerically. Secondly, the
analytic integration of dσ A over the one-parton subspace will yield the explicit poles in ε needed to
cancel the corresponding poles in dσV . For the example discussed above the approximation term
can be taken as a sum of two dipole subtraction terms:

∣
∣A2(p′1, p′3)

∣
∣2 1

s123

[
2

x1(x1 + x2)
− 2

x1
+(1− ε)

x2

x1

]

+
∣
∣A2(p′′1 , p′′3)

∣
∣2 1

s123

[
2

x2(x1 + x2)
− 2

x2
+(1− ε)

x1

x2

]

(4.3)

The momenta p′1, p′3, p′′1 and p′′3 are linear combinations of the original momenta p1, p2 and p3.
The first term is an approximation for x1 → 0, whereas the second term is an approximation for
x2 → 0. Note that the soft singularity is shared between the two dipole terms and that in general the
Born amplitudes A2 are evaluated with different momenta. Antenna subtraction [233, 234] allows
to reduce the number of subtraction terms needed and interpolates smoothly between the x1 → 0
and x2 → 0 regions. Within antenna subtraction one could take for our example as approximation

∣
∣A2(p′′′1 , p′′′3 )

∣
∣2 1

s123

[
2

x1x2
− 2

x1
− 2

x2
+(1− ε)

x2

x1
+(1− ε)

x1

x2

]

. (4.4)

Again, the Born amplitude A2 is evaluated with momenta p′′′1 and p′′′2 , which are linear combina-
tions of the original momenta p1, p2 and p3. As a rule of thumb, one antenna subtraction term
equals two dipol subtraction terms.

The dipole subtraction scheme has been worked out for general NLO calculations. The matrix
element corresponding to the approximation term dσ A is given as a sum over dipoles:

∑
pairs i, j

∑
k 6=i, j

Di j,k. (4.5)

Each dipole contribution has the following form:

Di j,k = A
(0) ∗

n+2

(
p1, ..., p̃(i j), ..., p̃k, ...

) (−Tk ·Ti j)

T2
i j

Vi j,k

2pi · p j
A

(0)
n+2

(
p1, ..., p̃(i j), ..., p̃k, ...

)
. (4.6)

Here Ti denotes the colour charge operator for parton i and Vi j,k is a matrix in the spin space of the
emitter parton (i j). In general, the operators Ti lead to colour correlations, while the Vi j,k’s lead to
spin correlations. The generation of all subtraction terms can be automated [81].
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4.2 Infrared divergences at NNLO

The following terms contribute at NNLO:

dσ (0)
n+2 =

(

A
(0)

n+2
∗
A

(0)
n+2

)

dφn+2,

dσ (1)
n+1 =

(

A
(0)

n+1
∗
A

(1)
n+1 + A

(1)
n+1

∗
A

(0)
n+1

)

dφn+1,

dσ (2)
n =

(

A
(0)

n
∗
A

(2)
n + A

(2)
n

∗
A

(0)
n + A

(1)
n

∗
A

(1)
n

)

dφn, (4.7)

where A
(l)

n denotes an amplitude with n external partons and l loops. dφn is the phase space
measure for n partons. We would like to construct a numerical program for an arbitrary infrared
safe observable O. Several options for the cancellation of infrared divergences have been discussed
[235–253]. Among those, the subtraction method – well-known from NLO computations and
sector decomposition are the most promising candidates. Let us look again at the subtraction
method. To render the individual contributions finite, one adds and subtracts suitable pieces:

〈O〉NNLO
n =

∫

On+2 dσ (0)
n+2 −On+1 ◦dα (0,1)

n+1 −On ◦dα (0,2)
n

+

∫

On+1 dσ (1)
n+1 +On+1 ◦dα (0,1)

n+1 −On ◦dα (1,1)
n

+

∫

On dσ (2)
n +On ◦dα (0,2)

n +On ◦dα (1,1)
n .

Here dα (0,1)
n+1 is a subtraction term for single unresolved configurations of Born amplitudes. This

term is already known from NLO calculations. The term dα (0,2)
n is a subtraction term for double un-

resolved configurations. Finally, dα (1,1)
n is a subtraction term for single unresolved configurations

involving one-loop amplitudes.
To construct these terms the universal factorisation properties of QCD amplitudes in unre-

solved limits are essential. QCD amplitudes factorise if they are decomposed into primitive ampli-
tudes. Primitive amplitudes are defined by a fixed cyclic ordering of the QCD partons, a definite
routing of the external fermion lines through the diagram and the particle content circulating in the
loop. One-loop amplitudes factorise in single unresolved limits as [131, 236, 254–258]

A(1)
n = Sing(0,1) ·A(1)

n−1 +Sing(1,1) ·A(0)
n−1. (4.8)

Tree amplitudes factorise in the double unresolved limits as [235, 259–264]

A(0)
n = Sing(0,2) ·A(0)

n−2. (4.9)

In addition, the pole structure of two-loop amplitudes is known [265–267]. The subtraction terms
have to interpolate between the various singular limits. Spin-averaged antenna subtraction terms
have been worked out in [60, 245] and first results at NNLO based on the subtraction method are
available for e+e− → 2 jets [60, 61] and the thrust distribution [62].

5. Summary

Precision calculations for multi-parton processes will play an important role for the physics
program at the LHC. I discussed various approaches how to overcome the bottle-necks we face
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technically: the length of expressions, the calculation of loop integrals and the occurrence of infra-
red divergences. Computer algebra, a divide-and-conquer approach and new developments based
on on-shell recursion relations help us to keep the length of expressions manageable. Sophisti-
cated techniques related to Mellin-Barnes transformations, shuffle algebras or sector decomposi-
tion allow us to compute multi-loop integrals. Urgently needed are also automated computations
of one-loop amplitudes. I discussed improvements of the Passarino-Veltman algorithm and new
ideas base on generalised unitarity. As far as the cancellation of infrared divergences is concerned,
there are systematic methods at NLO. Several methods, which address the issue at NNLO have
been proposed and first numerical results for observables based on the use of these methods have
emerged.
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