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Elementary particle physics experiments, searching for very rare processes, require the efficient 
analysis and selection algorithms able to separate signal from the overwhelming background. In 
the last years a number of learning machines have been developed. Three of such algorithms 
have been applied to identify τ leptons in the ATLAS experiment: Probability Density Estimator 
with Range Searches (PDE-RS), Neural Network and Support Vector Machine (SVM). 

In the PDE-RS method  the signal  probability  estimation  is based on counting the signal  and 
background events within a multidimensional hypercube surrounding the vector under classifica-
tion. In the SVM approach to signal and background separation a separating hyperplane defined 
by  a  limited  number  of  vectors  from the  training  sample  (support  vectors)  is  created.  The 
extension  to a  non-linear  separation  is  performed  by mapping  the  input  vectors  into  a  high 
dimensional space, in which data can be linearly separated. The use of kernel functions allows to 
perform computations in a high dimension feature space without explicitly knowing a mapping 
function.  We  have  implemented  an  SVM  algorithm  and  integrated  it  with  the  CERN 
TMVA/ROOT package.

All three methods have similar performance, which is significantly better than the baseline cut 
analysis.  This might indicate,  that the achieved background rejection is close to the maximal 
achievable performance.

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Amsterdam, the Netherlands
23-27 April, 2007

1 Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike License. http://pos.sissa.it



P
o
S
(
A
C
A
T
)
0
3
3

Optimization tau identification in ATLAS Marcin Wolter

1.Introduction

Tau leptons play an important role in the physics to be observed at LHC (Large Hadron 
Collider at CERN, Geneva). They enter in electroweak measurements, studies of the top quark 
and as a signature in searches for new phenomena such as Higgs, Supersymmetry and Extra 
Dimensions. However, the tau reconstruction and identification is not an easy task. The QCD 
multi  jet  events  dominating  the  backgrounds  have  much larger  cross  section,  therefore  the 
efficient selection is needed. 
In  this  contribution,  we  describe  multivariate  methods  used  for  τ-jet  identification  in  the 
ATLAS  experiment:  a  Neural  Network  (NN),  Probability  Density  Estimator  with  Range 
Searches (PDE_RS) and Support  Vector Machine (SVM).  The analysis is performed on the 
simulated  ATLAS data  from the  central  CSC production,  the  channels  Z->ττ,  W->τν  (with 
hadronic τ decays) are used as signal events and the events with QCD jets as background. In 
total about 30 k signal events and 1226 k background events are available.

2.Physics processes with τ leptons at ATLAS detector

The ATLAS experiment (A Toroidal LHC Apparatus) measures 22 m high, 44 m long and 
weights  7000  tons.  The  ATLAS  detector  is  composed  of  a  tracker,  a  calorimeter  system 
(electromagnetic  and  hadronic)  and  of  a  large  muon  spectrometer.  More  details  about  the 
detector can be found elsewhere [1].

Detection of many processes depends on the efficient reconstruction of hadronic τ: light 
Standard Model (SM) Higgs produced in Vector Boson Fusion (VBF)  qqH →qqττ,  charged 
SUSY Higgs production H → τν, neutral SUSY Higgs H/A → ττ at large tanβ, SUSY signatures 
with τ in the final state as well as Extra Dimensions. The well known processes Z → ττ and W 
→ τν will be also used to calibrate the calorimeters.

Tau leptons decay to hadrons in 64.8% of the cases and to electron or muon the rest of the 
time. In  77% of hadronic ∼ τ decays only one charged track is produced: τ → ντ + π ± + nπ0 and 
in  23% there are 3 charged tracks:  ∼ τ → ντ + 3π ± + nπ0  .  The  τ candidates with a single 
identified charged track are called 1-prong, with three tracks – 3-prong. 3π± candidates with one 
track missing or candidates with a single π± and one fake track are referred as 2-prong.

A τ lepton decaying hadronically generates a narrow τ jet. The background misidentified 
as  a  τ is  mainly a QCD multi  jet  event,  but  also electrons that  shower late  or  with strong 
Bremsstrahlung,  or  muons  interacting  in  the  calorimeter  are  contributing.  A  τ-jet  can  be 
identified through the presence of a well collimated calorimeter cluster with a small number of 
associated charged tracks . In ATLAS two methods of  τ reconstruction and identification are 
used: TauRec, which is based on calorimeter clusters and Tau1P3P starting from a good leading 
hadronic  track  and  creating  a  τ -jet  candidate  based  on  tracks  and  also  on  an  additional 
calorimeter information. All of the multivariate identification methods presented here refer to 
the Tau1P3P algorithm [2].

For  Tau1P3P  algorithm  several  discriminating  variables  to  separate  real  τ  jets  from 

background are defined:
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1) tracking part:
● Ntrack: number of associated tracks in an isolation cone,
● WT

Tracks: weighted width of track with respected to tau axis (2 or 3 tracks only),
● Minv

Tracks: invariant mass of tracks (2 or 3 tracks only),
2) calorimetry part:

● Nstrip: number of strips fired,
● WStrip: energy weighted width in strips,
● ΔET: fraction of energy in half core cone to energy in the entire core cone,
● REM: energy weighted radius in EM part,

3) mixture of calorimetry and tracking information:

● ΔEiso: fraction of energy in isolation cone to energy in core cone,

● Einv
Calo: invariant mass calculated from energy-flow,

● ET/pT: ratio of energy in HAD part to energy of tracks,
● ET

vis: visible transverse energy.
The variables are not independent and no single variable provides a really good signal and 

background separation (see Fig. 1 for three prong data), which emphasizes a need for efficient 
selection algorithms. Beside the standard cut analysis three multivariate algorithms are applied 
to select τ candidates: Probability Density Estimator with Range Searches (PDE_RS), Neural 
Network (NN) and Support Vector Machine (SVM). For testing these techniques the data are 
splited into two parts: one is used for training and the other one for validation.

Fig. 1: Discriminating variables for 3-prong τ candidates.

3.PDE-RS method

The  probability  density  estimation  technique  (PDE)  was  used  for  optimization  of  the 
Tau1P3P algorithm [3]. Method and implementation is based on publication [4]. As most of the 
standard multivariate algorithms the technique combines the input observables into a single one, 
called a discriminant, on which a cut separating signal from background is applied. Calculation 
of  the  discriminant  is  based  on  sampling  the  signal  and  background  densities  in  a  multi-
dimensional phase space built out of discriminating variables. Taking number of signal events 
nS and  number  of  background  events  nB in  a  small  volume  V(x)  around  point  x in  the 
multidimensional space, a discriminant defined as:
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D x=
nS

nSc nB
(1)

is  a  good  approximation  of  probability  that  given  candidate  is  a  signal  τ. Parameter 
c=NS /N B is the ratio of the total number of signal events  NS to the number of generated 

background events  NB. The event counting is done using multi-dimensional binary trees.  As 
stated in [4], this method is supposed to give significantly better results than the cut analysis and 
comparable to other multivariate techniques.

4.Neural Network

Neural network is a non-linear discriminating method (we refer reader to [5] for detailed 
description of the neural network techniques). The Stuttgart Neural Network Simulator [6] is 
used for the identification of τ candidates.

In the feedforward network, as used for the  τ identification, the information propagates 
from input to output without any loops. To each neuron j in the hidden layer n inputs xk and one 
output variable (the answer of the neuron) zj are associated. For the first hidden layer the inputs 
are the discriminating variables, for next layers the inputs are the outputs of the preceding layer.

The architecture of the network is optimized to give the proper classification of signal and 
background  and  to  avoid  over-fitting  at  the  same  time.  The  neural  network  used  for  τ 
identification  is built  with 9 (1-prong candidates) or 11 (2 or 3-prong) input nodes  and two 
layers of hidden nodes, each with 14 nodes (Fig. 2)

Fig. 2: Schematic view of the neural network.

The neuron sums up the input variables  yk, weighted by a factor  wjk, plus a threshold  Θj. 
This defines the signal Zj:

Z j=∑
k=1

N

w jk yk j (2)

The output  of  the  neuron is  a function of  Z: zj = a(Zj),  where  a(Zj)  is  called an activation 
function, and is chosen to be of the form:

ax =
1

1e−Z j
 (logistic function). (3)

The training phase of the neural network consists in determining the weighting factors wjk and 
the thresholds Θj. This is done by minimizing the error function defined as:
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E=
1
2
∑
i=1

n

X i−t i
2 , (4)

where ti is the expected output (0 for background, 1 for signal), Xi the actual value returned by 
the network and n is a number of events used for training.

In the process of training patterns are presented to the network which generates an output. 
The output is compared with the desired output from the training sample and the cost function is 
calculated. Than the weights in nodes is adjusted to decrease the value of the cost function. The 
errors are propagated backward using the current weights (the backpropagation algorithm [7,8]).

5.Support Vector Machine

In the early 1960s the linear support vector method was developed to construct separating 
hyperplanes for pattern recognition problems [9, 10]. The main idea of the SVM approach is to 
build a separating hyperplane which maximizes the margin. The position of the hyperplane is 
defined by the subset of all training vectors called support vectors. The extension into non-linear 
SVM [11, 12] is performed by mapping input vectors into a high dimensional feature space in 
which data can be separated by a linear procedure using the optimal separating hyperplane. 

5.1Linear Support Vector Machine

A detailed description of SVM formalism can be found for example in [13], here only a 
brief introduction is given. Consider a simple two-class classifier with oriented hyperplanes. If 

the training data is linearly separable, then such a set of  w , b  pairs can be found that the 

following constraints are satisfied:

∀ i y i x i⋅wb−10 (5)

where xi are the input vectors, yi the desired outputs yi=±1  and w , b  define a hyperplane. 

Intuitively, the classifier with the largest margin will give better generalization. Hence, in order 
to maximize the margin, one needs to minimize the cost function W:

W=1/2∣w∣2 (6)

with the constraints from Eqn. 5. At this point it would be beneficial to consider the significance 

of different input vectors xi . The training data points laying on the margins, which are called 

the support vectors (SV), are the data that contribute to defining the decision boundary (Fig. 3). 
If the other data are removed and the classifier is retrained on the remaining data, the training 
will  result  in  the  same decision  boundary.  To solve  this  constrained  quadratic  optimization 
problem, we first reformulate it in terms of a Lagrangian:

L  w , b ,=1/2∣w∣2−∑
i
i yi  x i⋅wb −1 (7)

where i≥0  and the condition from Eqn. 5 must be fulfilled.
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Fig. 3: Hyperplane classifier in two dimensions. Points x1, x2 and x3 define the margin, i.e. they are 
the support vectors.

Lagrangian L should be minimized with respect to ∣w∣  and b and maximized with respect 

to  . The optimization problem becomes the one of finding the  which maximize:

L =∑
i
i−1/2∑

i , j
i j y i y j x i⋅x j (8)

Both the optimization problem and the final decision function depend only on dot products 
between input vectors, which is crucial for the generalization to the nonlinear case. For non-
separable data the correct classification constraints in Eqn. 5 are modified by adding a slack 

variable ξi to it (ξi=0 if the vector is properly classified, otherwise ξi is a distance to the decision 

hyperplane).

∀ i y ix⋅wb−1i0 The  training  algorithm  needs  to  minimize  the  cost 

function, i.e. a trade-off between maximum margin and classification error:

W=1/2∣w∣2C∑
i


i (9)

The selection of C parameter defines how much a misclassification increases the cost. 

5.2Nonlinear Support Vector Machine

The formulation of SVM presented above can be further extended to build a nonlinear 
SVM, which can classify nonlinear data. Consider a function  Φ which maps the training data 

from ℜ
n  to some higher dimensional space ℜN . In this high dimensional space, the data can 

be linearly separable, hence the linear SVM formulation above can be applied to these data.

In the SVM formulation data appear only in the form of dot products  x i⋅x j   (see Eqn. 8). 

The  dot  product   xi ⋅ x j  appears  in  the  high  dimensional  feature  space,  where  it  is 

replaced by a kernel function:

K  x i , x j=x i⋅ x j (10)

By computing the dot product  using a kernel function, one avoids the mapping x . 

This  is  desirable,  because  x  can  be  tricky  or  impossible  to  compute.  Using  a  kernel 
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function, one does not need to know explicitly what the mapping is. The most frequently used 
kernel functions are the Gaussian, polynomial and linear.

The optimization problem becomes well defined convex quadratic programming problem, 
which assures us that there exists a global minimum. This is an advantage of SVMs compared to 
neural networks, which may fall into one of the local minima.

6.Implementation of SVM in the ROOT/TMVA framework

We have implemented the SVM algorithm in the CERN ROOT/TMVA framework [14, 
15].  This  implementation uses  a Sequential  Minimal  Optimization (SMO) [16] to  solve the 
quadratic problem. Further modifications proposed by Keerthi [17] speed up the algorithm. To 
speed up the minimization most of the algorithms divide a set of vectors into smaller subsets. 
The SMO method puts the subset selection to the extreme by selecting subsets of two vectors.

Let us give a brief description of the SMO algorithm, the details can be found in [16] and 
[17].  The  pairs  of  vectors  are  chosen,  using  heuristic  rules,  to  make  the  largest  possible 
minimization step. Because the working set is of the size of two it is straightforward to write 
down  the  analytic  solution.  The  minimization  procedure  is  repeated  recursively  until  the 
minimum is found.  The SMO algorithm has proved to be significantly faster then the other 
methods like chunking [18] or SVMlight [19], and has become the most common minimization 
method used in the SVM implementations.

The implemented  by us  SVM algorithm performs the classification tasks using  linear, 
polynomial or Gaussian kernel function. The Gaussian kernel allows to apply any, even very 
complicated, discriminant shape in the input space.

7.Application to the identification of τ particle in the ATLAS experiment

The Neural Network, PDE-RS and the SVM implemented within TMVA package have 
been used for identification of τ leptons in ATLAS experiment. The results are shown in Fig. 4. 

Signal efficiency is defined as a ratio of accepted and all  signal events  s=N accep
sig / Nall

sig  and 

background rejection as a ratio of rejected and all background events R=1−b=N rej
bkg/N all

bkg .

All three multivariate algorithms perform significantly better than the basic cut analysis. 
The best performance is achieved with a Neural Network, however all three methods have very 
similar performance. This might indicate, that the achieved background rejection is close to the 
Bayesian limit.

For the SVM classification the Gaussian kernel function was chosen. The performance of 
the SVM with radial kernel depends on two parameters: the width of the Gaussian kernel and 
the cost parameter  C.  A grid search in the space of these two parameters was performed to 
maximize the background rejection. It must be pointed out, that SVM was trained on a small 
subsample of about 10% of the data available. This shows a good generalization performance of 
the SVM technique.
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Fig. 4. The ROC curve (1-εbkg vs. εsig, left plot) for 1, 2 and 3-prong candidates for the visible 
transverse energy interval 15 GeV < Et

vis.. The multivariate methods perform significantly better than the 

cut analysis. In the right plot the distributions of discriminant for all three methods for 3-prong candidates 
are shown.

8.Summary

Identification of τ candidates by the Tau1p3p algorithm is significantly improved by using 
multivariate analysis tools. All of the applied classification methods are performing well giving 
similar results. The analysis based on cuts is robust, transparent for users and doesn't require 
CPU consuming training. Neural network is in our case giving the best performance. It allows, 
after a costly training, a very fast classification while the trained network is converted to the C 
code. PDE-RS  is  robust and transparent for users, but large samples of reference candidates are 
needed, also the classification is slower than for other methods. The SVM algorithm wasn't, up 
to  now,  commonly  used  in  HEP. We  have  shown  that  Support  Vector  Machine  can  be 
successfully used to analyze high energy physics data. The implementation described above is 
included in the ROOT package,  therefore it  is easily available to the entire particle  physics 
community.  This  implementation  extends  the  range  of  multivariate  analysis  tools  available 
within the ROOT framework. 
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