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1. Introduction

In order to address the data analysis challenges imposed by the complexity of the data
generated by current and future high energy physics experiments, new techniques for performing
various analysis tasks need to be investigated.

A class of algorithms less explored in High Energy Physics is the Evolutionary Algorithms
class. These are computer algorithms inspired by the theories of the natural evolution of the species.
Natural evolution, in this context, is defined as the optimisation process that aims to increase the
ability of individuals to survive and reproduce in a specific environment. This ability is quantita-
tively measured by the evolutionary fitness of the individuals. The unique characteristics of each
individual are represented in its chromosomes. Through the natural selection process the fitter
chromosomes will mate more often, creating offspring with similar or better fitness. The goal of
the natural evolution process is to create a population of increasing fitness.

Evolutionary Algorithms use simulation of natural evolution on a computer. The candidate
solution of the problem to be solved by the algorithm represents an individual that is encoded in
a form understood by the computer called a chromosome. A chromosome can be divided into
one or more constituent parts called genes. The quality of the candidate solution is evaluated
with a function called fitness function. The reproduction process of the individuals is simulated
by applying on them a set of operators, called genetic operators, creating genetic variation. The
selection of the individuals for reproduction is, usually, proportional to their fitness (value of the
fitness function for the individual). Through an iterative process, the algorithm improves the quality
of the solution until an optimal solution is found.

The best known versions of Evolutionary Algorithms are Genetic Algorithms (GA) [1] and
Genetic Programming (GP) [2]. The main difference between the two algorithms is the encoding
method of the candidate solution into a chromosome. In GA the chromosome is, in the classical
version of the algorithm, a binary string of fixed length while in GP it is a LISP expression of fixed
length represented graphically as a tree. Genetic variation is produced by applying genetic opera-
tors on the binary string or on the tree. For GP this method generates many syntactically incorrect
structures during the reproduction process, resulting in high inefficiencies of the algorithms.

A new variant of the Evolutionary Algorithms, called Gene Expression Programming (GEP)
[3] was proposed in 2001. It overcomes some of the limitations of GA and GP by working with
two entities, the chromosome and the expression tree (ET). The ET corresponds to a mathematical
expression that represents the actual candidate solution. The chromosome is the encoder of the
candidate solution which is then translated into an expression tree.

The first application of GEP to particle physics data analysis was for an event selection prob-
lem for the Ks — w1~ decay process and was presented in [5] and [6]. This paper extends that
analysis, investigating the influence of the number of the input variables and the input functions,
and of the number of events in the data sample on the algorithm results. Also, the effect of a par-
simony pressure applied to the fitness function was studied. The results obtained with GEP were
compared with those obtained with an Artificial Neural Network (ANN) and a Boosted Decision
Trees (BDT) algorithm.
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2. Event Selection Problem

The three algorithms, GEP, ANN and BDT, were tested for an event selection problem. Us-
ing a statistical learning approach, they were used to extract selection criteria for a signal/background
classification. The purpose of the investigation was the study of the behaviour and performance of
the algorithms, rather than to extract a physics result.

The physics process used for this study was the decay process Ks — 777~ with K produced
in eTe™ interaction at ~10 GeV in the BaBar experiment [7]. The data samples were Monte Carlo
events. ete™ — gg events (g being a quark and G an antiquark) were generated using JETSET
[8] (for g being the u,d,s and ¢ quarks) and EvtGen [9] (for g being the b quark) simulation
packages. The generated events were passed through the detector response simulation package
[10] and reconstructed with the BaBar analysis software. The reconstructed Kg candidates were
considered signal if they were associated with the generated Ky particles and their reconstructed
7 daughters were associated with the 7w daughters of the generated Ky particles. All the other
reconstructed Ky candidates were considered background.

Training and test samples of equal sizes (5,000 or 10,000 events) with varying signal-to-
background (S/B) ratios (1:1, 1:2, 1:4 and 1:10) and with either 8 or 20 event variables were used
as input to the analysis. Selection models were extracted from the training data samples and tested
on the corresponding test data samples.

The set of the 8 event variables contained the variables usually used in a standard cut-based
analysis for the Ky decay process:

e doca - distance between the two 7 daughters of Ky at the point of closest approach,

e Ryy- radius of the cylinder that defines the e e™ interaction region,

|Rz| - half length of the cylinder that defines the eTe™ interaction region,

| cos(Bher)| - absolute value of the cosine of the Ky helicity angle,

SFL - K signed flight length defined as the projection of the vector from interaction point to
K decay vertex on the K¢ momentum direction,

Fisig - statistical significance of the K flight length,
e Pchi - x? probability of Ky vertex,
e Mass - Kg reconstructed mass.

The set of 20 variables contained, in addition of those listed before, vertex variables of the K
particle and kinematic variables of the 7+ particles:

o Vxx,Vxy,Vxz - cartesian coordinates of Kg vertex,
e cos(6k;), Pk, Pk, - polar coordinates of the Ky momentum vector,
e ¢cos(0z,), @r,, Pr,- polar coordinates of the 77 momentum vector,

e c08(0x,), Or,, Pr,- polar coordinates of the 7~ momentum vector.
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3. Gene Expression Programming method

3.1 Algorithm

The GEP algorithm is described in detail in [4] and an extensive summary is also presented
in [5].

The algorithm starts with the problem definition, the encoding of the candidate solution of
the problem into a chromosome and the definition of the fitness function that describes how good
the candidate solution is for the problem at hand. Then an initial population of chromosomes is
randomly generated, the chromosomes are translated into expression trees and then into a math-
ematical expression, and the fitness function is evaluated for each chromosome. If a solution of
adequate quality is not found, a set of chromosomes is selected and reproduced, creating a new
generation of chromosomes. The process is repeated until an optimal solution to the problem is
found or a given number of generations have passed.

The candidate solution is encoded into a chromosome composed of one or more genes of
equal length. A gene is divided into a head composed of terminals (variables and constants) and
functions, and a tail composed only of terminals. The length of the head () is an input parameter
of the algorithm while the length of the tail (¢) is given by:

t=h(n—1)+1 G.1)

where n is the largest arity of the functions used in the gene head.

The list of functions and variables to be used in a gene is input information for the algorithm,
while the constants are created by the algorithm itself in a range specified by the user.

Each gene is translated into an expression tree using simple rules as described in [4]. In
the case of multigenic chromosomes, the expression trees are connected with a linking function
defined by the user. The selection of the chromosomes to be reproduced is made using the elitism
(unchanged replication of the best fitted chromosome into the next generation) and the roulette-
wheel [11] methods. The chromosomes selected with the roulette-wheel method are reproduced by
applying on them a set of genetic operators:

e mutation - randomly changes an element of a chromosome into another element (preserving
the rule that the tails contain only terminals);

e transposition - randomly copies a part of the chromosome to another point in the gene head
of the same chromosome;

e recombination (cross-over) - exchanges parts of a pair of randomly chosen chromosomes.

In this study three sets of functions, containing 18 comparison functions (listed in Table 1a),
38 mathematical functions (listed in Table 1b) and 56 functions (the combination of the previous
two sets) were used as input to the algorithm for chromosome development. The constants used
in the chromosome are developed by the algorithm in the range of (—10, 10) (given as input to the
algorithm).

Other GEP input parameters were: the length of the gene head (between 1 and 20), the number
of chromosomes per generation (100) and the maximum number of generations (between 3,000 and
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Table 1a Table 1b
18 Comparison functions 38 Mathematical functions
Function Definition Funct.| Def. |Funct.| Def.
OR1 | ifx<0OR y<0,1,else 0 + (x+y) - (x-y)

OR2 | ifx>00R y>0, 1, else 0 * (x*y) / x/y)
OR3 | ifx<O0OR y<0, 1,else 0 | Mod | mod(x,y) | Pow | pow(x,y)
OR4 | ifx<1ORy<lI,1l,else 0 | Sqrt | sqrt(x) | Exp | exp(x)
OR5 |[ifx>10ORy>1,1,else 0 |Pow10|pow(10,x)| Ln In(x)
OR6 | ifx<1ORy<lI,1,else 0 | Log log(x) Abs | abs(x)
ANDI1 |if x<0 AND y<O0, 1, else 0] Inv 1/x Neg -X
AND?2 |if x>0 AND y>0, 1, else O] Sin sin(X) Cos | cos(x)
AND3 |if x<0 AND y<0, 1, else O| Tan tan(x) Csc csc(x)
AND4 |if x<1 AND y<1, 1, else 0| Sec sec(x) Cot cot(x)
ANDS |if x>1 AND y>1, 1, else O] Asin | arcsin(x) || Acos | arccos(X)
ANDG |if x<1 AND y<1, 1, else O Atan | arctan(x) | Acsc | arccsc(x)

LT2B if x<y, 1, else 0 Asec | arxsec(X) | Acot | arccot(x)
GT2B if x>y, 1, else 0 Sinh | sinh(x) | Cosh | cosh(x)
LOE2B if x<y, 1, else 0 Tanh | tanh(x) | Csch | csch(x)
GOE2B if x>y, 1, else O Sech | sech(x) | Coth | coth(x)

ET2B if x=y, 1, else 0 Asinh |arcsinh(X) || Acosh|arccosh(x)
NET2B if x#£y, 1, else 0 Atanh |arctanh(x) || Acsch|arccsch(x)

Asech |arxsech(x)| Acoth |arccoth(x)

Table 1: The sets of GEP input functions

20,000, depending on the complexity of the chromosomes). The genetic operator rates were kept
as recommended in [4]: 0.044 for mutation, 0.3 for transposition and 0.1 for recombination.

The fitness function was the number of hits (the number of events correctly classified as signal
or background).

The performance of the algorithm was analysed in terms of the classification accuracy pa-
rameter (Acc) defined as the the ratio of the total number of events correctly classified (signal and
background) to the total number of events of the sample.

The GEP implementation in the Windows package GeneXProTools 4.0 [12] was used. Typical

performance was 1-4 generations/second, depending on the complexity of the model (3.2 GHz
Pentium 4 Mobile).
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3.2 Analysis and Results

3.2.1 Model Evolution
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Figure 1: Evolution of GEP training accuracy over 10,000 generations for a 5,000-event data sample,
S/B=1:4, 8 variables, head size 10 and 38 input functions.
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Figure 2: The expression tree for the best model developed during the evolution depicted in Fig. 1 , where
do-d7 are the event variables and cg is a constant. Each function, variable and costant is represented as a
node in the tree.

The GEP models were monitored as the population evolved in order to identify the con-
vergence of the search process. An example is presented in Fig. 1 that shows how the training
accuracy improved as one population was followed for 10,000 generations. In this particular run,
the best solution was found after 4,399 generations and remained unchanged until the end of the
run. The expression tree for the best-adapted chromosome is given in Fig. 2.

3.2.2 Model Complexity

The dependence of the models developed by GEP as a function of the complexity of the
chromosomes was studied for different input functions and input data sample configurations. The
length of the gene head was varied between 1 and 30 and the classification accuracy obtained with
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the fittest chromosome was recorded. It was observed that a high quality solution is obtained with
chromosomes with the gene head length equal to 10 and no significant improvements were obtained
with more complex chromosomes. An example is shown in Fig. 3 that illustrates the change in the
training accuracy and the testing accuracy as the size of the gene head is varied, for a data sample
with 5,000 events, 8 input variables and signal-to-background ratio of 1:4. It is seen that a plateau
in the classification accuracy has been reached by gene head length equal to 10.

For the rest of the study a gene head length of 10 was considered the optimal chromosome con-
figuration for the problem investigated in this paper. All the results reported below were obtained
with this configuration.
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Figure 3: GEP training accuracy and associated testing accuracy for a 5,000-event data sample, S/B=1:4, 8
variables, 38 input functions, as a function of head size.

3.2.3 Input functions and parsimony pressure

The influence of the number and type of input functions on the performance of the selection
models developed by GEP was studied with a data sample containing 8 variables, 5,000 events and
having signal-to-background ratio equal to 1:4.

The analysis was repeated, in the same conditions, with the set of 18 functions (with which
cut-type criteria are built) listed in Table 1a, the set of 38 mathematical functions listed in Table 1b
and the set of 56 functions obtained combining the two previous sets.

The results, in terms of the classification accuracy (and its statistical uncertainty) on the train-
ing and test data samples, and the dimension of the models (number of nodes in the expression tree)
are listed in Table 2. The statistical uncertainty of the classification accuracy was calculated with
the relation y/A..(1 —A..)N, where A, is the classification accuracy and N is the number of events
in the sample. The results presented in Table 2 indicate no significant variation of the classification
accuracy with the number of input functions. Both the comparison functions and the mathematical
functions, as well as the combination of the two, produce solutions of similar quality. As the com-
parison functions provide good solutions that can be also easily interpreted from physics point of
view, they can be considered the optimal input functions for the problem studied here. Addition of
new input functions does not extend the potential of the algorithm. This behaviour is common to all
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Fitness Classification accuracy Classification accuracy
Method with parsimony pressure
Accuracy (%) No. of Accuracy (%) No. of
Functions Train Test Nodes Train Test Nodes
18 95.1£0.3 | 95.1£0.3 17 94.8+0.3 | 94.8+0.3 13
38 95.1+0.3 | 95.0+0.3 12 95.44+0.3 | 95.1+£0.3 14
56 95.3+0.3 | 9544+0.3 11 95.54+0.3 | 95.1£0.3 14

Table 2: The effect of the number. of input functions and of parsimony pressure on classification accuracy
and expression tree size (no. of nodes). (S/B=1:4, 5,000 events, 8 variables, head size=10)

evolutionary algorithms. They provide the best solution with a chromosome of a certain complexity
or a certain amount of input information, beyond of which no improvement is achieved.

The analysis was repeated applying a parsimony pressure [4] to the fitness function, in an
attempt to reduce the complexity of the models. The fitness-with-parsimony-pressure is given by
the following expression:

I Smax—S
5000 Smax — Smin

where rf is the raw fitness (number of hits, in this study), S is the size of ET (number of nodes),

fop=rf(1+

) (3.2)

and Spax and Spin are the maximum and minimum ET sizes,

Smax = G(h+1) (3.3)

Smin =G 3.4

where G is the number of genes (in this case 1) and / and ¢ are the chromosome head and tail sizes,
respectively.

The results of this analysis are also presented in Table 2 which contains the classification
accuracy on training and test data obtained with parsimony pressure, as well as the number of nodes
of the expression trees. These results show no significant effect of applying parsimony pressure
during GEP modelling. This pressure did not improve the accuracy of the models developed, nor
indeed was it always successful in lowering the models’ complexity.

3.2.4 Data complexity

The effect on GEP solution quality of changing the number of event variables from 8 to

20, and the size of the datasets from 5,000 to 10,000 was also studied for the comparison input

functions. The results are summarised in Table 3. No significant change is seen in the classification
accuracy when adding new event variables or new events in the data sample.

The similarity between the results obtained with 8 and 20 variables data sets indicates that

GE-P is able to ignore the irrelevant variables in the final solution. Irrelevant variables means, in

this context, variables that do not contribute significantly to the signal/background separation. The
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Classification accuracy (%)

5,000-event Samples 10,000-event Samples
8 variables 20 variables 8 variables 20 variables
Training Test Training Test Training Test Training Test
95.1+£0.3]195.1£0.3|94.94+0.3|94.84+0.394.94+0.294.8+£0.2(95.1+0.2 |95.0+0.2

Table 3: The effect on GEP classification accuracy of varying the number of event variables and the sample
size for S/B=1:4 data, head size=10, 18 input functions

initial set of 8 variables are, indeed, the most powerful, as it was seen in a standard cut-based
analysis of the physics process studied here [13].

The similarity between the results obtained with 5,000 and 10,000 events indicates that, at
least for the problem studied here, GEP is able to find high quality solutions with relatively small
amounts of data.

4. Artificial Neural Network method

4.1 Algorithm

The Artificial Neural Network used in this study is a Multi-Layer Perceptron consisting of
an input layer of N neurons (where N is the number of event variables), two hidden layers of N-1
and N-2 neurons, respectively, and an output layer of one neuron. The input to each hidden-layer
or output neuron j is a weighted linear combination with bias of the outputs y; from the previous
layer’s neurons:

xXj=woj+ Y Wijyi 4.1
i
The hidden-layer neurons apply a sigmoid activation function to their inputs

1
Cl4e N

yj 4.2)
while the output neuron is linear. The weights are initially set to random values and the ANN’s
output 0, calculated for each event p. The weights are then adjusted to minimise the error function

E=Ye, 4.3)
p

1
%:ﬂ%—mz (4.4)

where 1, is the target output (in our case the correct identification of the event as signal (f, = 1) or
background (¢, = 0)).

The learning method is the Robbins-Monro stochastic approximation [14] applied to multi-
layer perceptrons:
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W,'j(l“f‘l) :Wl'j(l‘)—l-Awij(l‘) 4.5)
with
AW,’j(l‘) = —n(&ep/8wij+6)—|—sAw,~j(t— 1) 4.6)

In this study the values of the parameters were 7 = 0.1 and § = € = 0. 1 was kept constant
rather than decaying at each epoch through the training sample [17].

The value of ANN output which gave the maximum classification accuracy for the training
sample was found, and this threshold applied to the output of the network on the test sample to
classify its events.

TMIpANN from the Toolkit for Multivariate Analysis (TMVA) V03-03-03[15] combined with
ROOT 5.12[16] was used. TMIpANN embodies the ROOT TMultilayerPerceptron class
with default parameters; this is in turn based upon the package MLPfit[17]. Typical training time
under Scientific Linux CERN 3.0.6 was around 3 epochs per second (2.8 GHz Pentium D).

4.2 Analysis and Results

The ANN was run on all data samples used in the GEP analysis. The results for the sample
with the signal-to-background equal to 1:4 are summarised in Fig. 4. It shows the classification
error (i.e. the proportion of misclassified events) after training the ANN for different numbers of
epochs, and the application of the resulting networks to the test samples.

0.06
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—&-Testing 5K 8vars
- Training 10K 8vars
0.02 | - Testing 10K 8vars
-8 Training 5K 20vars
-B- Testing 5K 20vars
-©-Training 10K 20vars
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Classification Error

10 50 100 500 1000 5000 10000
Epoch

Figure 4: ANN classification performance on 5,000- and 10,000-event data samples with 8 or 20 event
variables and S/B=1:4, as a function of epoch.

It can be seen that beyond epoch 100 the test error tends to increase while the training error
continues to decrease, especially for the data samples with the larger number of variables and
smaller sample size. This is the result of overtraining when the network becomes specific to the
training sample and generalises poorly to other samples.

For the same number of variables the increase of the number of events tends to reduce the
difference between the training and test errors, reducing the overtraining effect.

For the same number of events, the increase of the number of variables decreases the perfor-
mance of the network, increasing the difference between the training and test errors. The increase
of the number of events reduces this effect in a certain extent.

10
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These observations confirm the known behaviour of ANNs of having difficulties in dealing
with irrelevant input variables, an effect that can be reduced by increasing the amount of train-
ing and test data. For the problem studied here the effect is small as the problem is of reduced
complexity.

Classification Accuracy (%)

5,000-event Samples 10,000-event Samples

8 variables 20 variables 8 variables 20 variables

Training Test Training Test Training Test Training Test

96.1+0.3]95.8£0.3|96.8+0.3|94.54+0.396.1£0.2]96.0£0.296.6+0.2 |95.24+0.2

Table 4: ANN classification accuracies after 100 epochs for the dataset with S/B=1:4.

For all the data samples analysed in this study epoch 100 was chosen as the evaluation point
of the ANN performance. Table 4 shows the classification accuracy obtained with ANN for the
data set with signal-to-background ratio equal to 1:4, results that are to be compared with the GEP
results presented in Table 3.

5. Boosted Decision Trees method

5.1 Algorithm

Boosted Decision Trees method, known in the statistics field for quite some time, was only
recently applied to high energy physics data [18], in the MiniBooNE experiment [19]. The authors
of that study found the method superior to ANN, giving better event separation and being more
stable and robust that ANN.

The method consists in applying a boosting algorithm to a set of Decision Trees [20] . The
boosting algorithm is a procedure of combining weak classifiers, Decision Trees in this case, in
order to obtain a more powerful classifier.

The BDT method used in this study follow the procedure from [18].

Decision Trees use successive decision nodes to categorise the events from the sample as either
signal or background. At each node a single event variable is used to decide if the event is signal or
background. Successive decisions on each separated sample form a tree structure with leaves at the
end. An event is considered as signal or background depending on the classification of its ultimate
leaf node during the training process.

Training of the Decision Trees is the process which defines the cut criteria at each node. At the
root node, the variable and its cut value which gives the best separation into signal and background
are determined. The sample is divided according to this criterion, and the same process applied to
each subsample. Nodes continue to be subdivided until each node has fewer than a given number
of events or until each leaf contains only signal or only background events.

In order to determine the optimum cut for each node a weight W; is assigned to each event,
starting with values equal to 1/N, where N is the number of events. The purity of the sample in the
branch is then defined as:

11
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LW
Zs WS + Zb Wb

where )., ;, are the sums over signal and background events, respectively.

5.1

For a given branch the Gini index is then determined with the formula:

N
Gini = <Z W,-) P(1-P) (5.2)
i=1

The cut is optimised to minimise the sum of the Gini index for the left and right parts of the
tree (Ginijefichild + Ginirightchild)-

Boosting is applied by increasing the weights of the events which are initially misclassified,
and forming a new decision tree for the re-weighted sample. The AdaBoost boosting method [21]
is used in this study. For the mth tree, the following quantities are defined:

N
1 WE;

err, = % (5.3)

Yo Wi
Oy = BIn((1—erry)/erry) (5.4)

where E; = 0 for correctly classified events, E; = 1 otherwise, and f3 is usually unity.
The weights are then adjusted via

W; — Wie®nti (5.5)

and renormalised such that Y, W; = 1.

This procedure is repeated more times (typically several hundred) resulting in a “forest” of
decision trees. Each event is subjected to the forest of trees and a likelihood estimator for the event
to be signal or background is developed from the frequency of which the event is classified as signal
or background by the trees in the forest. This estimator is then used as the criterion for dividing
events into signal or background and to determine the efficiency of the classification.

Because the decision trees can become quite large and complex, they are usually “pruned”, i.e.
pairs of leaves collapsed back into one if this reduces some measure of complexity. In this study
the complexity measure called Cost Complexity [20], given by the following expression, was used:

on+ ZNiQi (5.6)

where « is the “prune strength”, a parameter adjusted by the user, 7 is the number of leaves, N; is
the number of events in the ith leaf and Q; = P(1 — P) is the quality factor of that leaf.

The BDT implementation in the TMVA V03-03-03 package was used in this study. Typical
training time for a 5,000-event data sample was around 3 decision trees per second using a 2.8 GHz
Pentium D computer.

12
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5.2 Results

The BDT method implemented in TMVA is endowed with a large number of parameters
which can be used to modify the analysis. Using the dataset with S/B = 1:1, 5,000 events, and 8
event variables, a search for parameters which gave the best classification accuracy was performed.
These parameters were then used to define a smaller parameter space to be searched for the best
performance on the datasets with other S/B ratios. The primary choices of the parameters were:

nTrees: 1000 — the number of decision trees in the forest,

nEventsMin: 10, 20, 30, 40 — the number of events at which the node splitting ceases,
nCuts: 20, 30 — the number of steps in optimising the cut for a node,

SeparationType: Ginilndex,

BoostType: AdaBoost,

Prune Method: CostComplexity.
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Figure 5: Evolution of the BDT classification accuracy over the increase of the size of the forest for the
5,000-event data sample, S/B=1:4, 8 variables.

An example of the evolution of the classification accuracy with the increase of the number of
the decision trees in the forest is shown in Fig. 5 for the dataset with S/B = 1:4, 8 event variables
and 5,000 events (for both training and test datasets). It can be seen that a plateau in the training
distribution is reached around 1,000 trees. Also, the maximum value of the test classification
accuracy is obtained with this configuration. This number of decision trees was found optimal for
all datasets studied.

The influence on BDT classification accuracy of increasing the number of event variables
from 8 to 20 and of the number of events from 5,000 to 10,000 was also studied. The results are
presented in Table 5 and are to be compared with GEP and ANN results presented in Table 3 and
Table 4, respectively. No significant variation of the BDT performance is seen when the number of
variables or the number of events is increased. The similarity of these results indicate that BDT, as
GEDP, is able to deal with irrelevant input variables and, for the problem studied here, it can produce
high accuracy classifications with relatively low amounts of data.

13
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Classification Accuracy (%)

5,000-event Samples 10,000-event Samples
8 variables 20 variables 8 variables 20 variables
Training Test Training Test Training Test Training Test
97.24+0.2 196.1£0.3 | 97.8+£0.2 | 96.1+0.3 | 98.0£0.1 | 96.0£0.2 | 96.9+0.2 | 96.1+0.2

Table 5: BDT classification accuracy for the data sample with S/B=1:4

6. Comparison of the results obtained with the GEP, ANN and BDT methods
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Figure 6: Comparison of the training and test classification accuracies for the GEP, ANN and BDT methods
at varying S/B ratios.

The results of ANN and BDT models developed on 5,000-event samples with 8 variables at
S/B ratios of 1:1, 1:2, 1:4, and 1:10 were compared to GEP results for the same samples obtained
with models of head size equal to 10 and with the set of 38 input mathematical functions. The
classification accuracies after training and testing for the three methods are shown in Fig. 6. The
GEP and ANN training results for S/B=1 are identical to the test results (overlapping symbols on
the graph). The GEP classification accuracies are with 1 — 3% lower than those given by the other
two methods, with the difference tending to increase for samples with higher S/B. The best results
were obtained with the BDT methods.

It can also be noticed that the difference between the training and test results (a measure of the
generalisation power of the solution) tends slightly to increase with the increase of the S/B ratio for
the BDT method, to decrease for the GEP method and to remain unchanged for the ANN method.

Higher statistics studies are needed in order to extract more accurate conclusions. The limita-
tions of the software used made such a study impractical at this moment.
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Figure 7: Background rejection as a function of signal efficiency for the three methods applied to the test
5,000-event sample with 8 variables and S/B=1:4

Different thresholds for the signal and background definition were applied on the output of
the three methods ( GEP with 38 input functions) for the test data sample with S/B=1:4. The
corresponding signal efficiency and background rejection were calculated and their dependence is
presented in Fig. 7. Signal efficiency (background rejection) was defined as the ratio of the num-
ber of events classified as signal (background) to the real number of signal (background) events in
the sample. While the ANN and BDT methods are given similar results on the entire spectrum of
values, the GEP methods gives lower background rejection than the other two methods at signal
efficiencies over 80%. In considering this result it has to be taken into account, however, that the
GEP models were developed in order to maximise the classification accuracy, signal and back-
ground events being treated equally during the development of the solution. Fitness functions that
would favour the correct classification of the signal events could produce different results. These
type of fitness functions were not available in the software tool used.

7. Conclusion

Gene Expression Programming was applied to an event selection problem for a set of par-
ticle physics data. For the problem and the data studied (Ks — n* 7~ decay process), the perfor-
mance of the algorithm did not improve by increasing the number of event variables over 8 or by
increasing the number of the input functions over 18. Also, no significant change of the classifica-
tion accuracy was obtained by increasing the number of events in the data sample or by applying a
parsimony pressure to the fitness function (appart of the decrease of the statistical uncertainty with
the increase of the number of events).

A comparison of a Gene Expression Programming method for classifying high-energy physics
data with an Artificial Neural Network and a Boosted Decision Trees method has shown that the
three methods give similar test classification accuracies, with differences up to 3%. The best results
seem to be obtained with Boosted Decision Trees. This conclusion, however, has to be considered
valid only for the problem and the data studied here, until validations for other problems and data
have been performed.
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It was also observed that the GEP method does not suffer from overtraining on larger data
samples, or those with a large number of event variables. In addition the GEP models, as well as
the BDT ones, are more easily interpreted, particularly when comparison input functions are used
for GEP.

The generalisation power (the difference between the results on training and test data) of the
BDT solutions shows a slight tendency to decrease toward higher S/B ratios of the input data while
for the GEP solutions the tendency is the generalisation power to increase with the increase of the
S/B. The ANN solutions tend to have a similar generalisation power for the S/B range investigated.

The ANN method seems slightly faster than the other methods. It requires fewer iterations
to reach its optimum training point, only 100 in this study, while GEP required a few thousands
generations and BDT a few hundreds of decision trees to reach their optimal solutions.

The study presented here will be extended for larger data samples and for more complex
data and problems in order to consolidate the present observations concerning the advantages and
disadvantages of each method. This extention is planned to use a private software implemetation
of the GEP algorithm which is under development.
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