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1. Introduction

A frequently used technique in data analysis is the comparison of histograms. First suggested
by Pearson [fll] the x? test of homogeneity is used widely for comparing usual (unweighted) his-
tograms. The modified x?2 test for comparison of weighted and unweighted histograms recently
was proposed in [H].

This paper develops the ideas presented in [f]. From this development, two new results are
presented. First, the x2 test for comparing weighted and unweighted histograms is improved so that
it can be applied for histograms with lower minimal number of events in a bin than is recommended
in [@. And secondly, a new x2 test is proposed for the comparison two weighted histograms.

The paper is organized as follows. In section 2 the usual x?2 test and its application for the
comparison of usual unweighted histograms is discussed. Tests for the comparison of weighted and
unweighted histograms and two weighted histograms are proposed in sections 3 and 4 respectively.
In section 5 the tests are illustrated and verified by a numerical example and experiments.

2. x2test for comparison two (unweighted) histograms

Without limiting the general nature of the discussion, we consider two histograms with the
same binning and the number of bins equal to r. Let us denote the number of events in the ith
bin in the first histogram as n; and as m in the second one. The total number of events in the first
histogram is equal to N = ¥{_, nj, and M = ${_; m; in the second histogram.

The hypothesis of homogeneity [B] is that the two histograms represent random values with
identical distributions. It is equivalent that there exist r constants ps, ..., pr, such that Si_; pi = 1,
and the probability of belonging to the ith bin for some measured value in both experiments is equal
to p;i. The number of events in the ith bin is a random variable with a distribution approximated
by a Poisson probability distribution e NP (Np;)" /n;! for the first histogram and with distribution
e MPi(Mp;)™ /my! for the second histogram. If the hypothesis of homogeneity is valid, then the
maximum likelihood estimator of p;,i =1,....r, is
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The comparison procedure can include an analysis of the residuals which is often helpful in
identifying the bins of histograms responsible for a significant overall X2 value. Most convenient
for analysis are the adjusted (normalized) residuals [f]

—Np;
VNG /(T=N/(N+M))(L - (ni+m)/(N+M))

If hypotheses of homogeneity are valid then residuals r; are approximately independent and iden-
tically distributed random variables having .#(0,1) distribution. Notice that residuals (E.3) are
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related with the first histogram and residuals related with the second histogram are:

- m —Mp . 2.4)
VMBi/(L=M/(N+M))(L— (ni+m)/(N+M))
As ri = —r/, it makes sense either to use residuals (£.3) or (2.4).

The application of the x? test has restrictions related to the value of the expected frequencies
Npi,Mp;,i =1,....r. A conservative rule formulated in [{] is that all the expectations must be 1 or
greater for both histograms. The authors point out that this rule is extremely conservative and in the
majority of cases the x? test may be used for histograms with expectations in excess of 0.5 in the
smallest bin. In practical cases when expected frequencies are not known the estimated expected
frequencies Mp;, Nf;,i = 1,...,r can be used.

3. Unweighted and weighted histograms comparison

A simple modification of the ideas described above can be used for the comparison of the
usual (unweighted) and weighted histograms. Let us denote the number of events in the ith bin in
the unweighted histogram as n; and the common weight of events in the ith bin of the weighted
histogram as w;. The total number of events in the unweighted histogram is equal to N = Si_; n;
and the total weight of events in the weighted histogram is equal to W = S{_; w.

Let us formulate the hypothesis of identity of an unweighted histogram to a weighted his-
togram so that there exist r constants py, ..., pr, such that S{_; pi = 1, and the probability of be-
longing to the ith bin for some measured value is equal to p; for the unweighted histogram and
expectation value of weight w; equal to W p; for the weighted histogram. The number of events in
the ith bin is a random variable with distribution approximated by the Poisson probability distri-
bution e NPi(Np;)" /m! for the unweighted histogram. The weight w; is a random variable with
a distribution approximated by the normal probability distribution .4 (W p;, ), where ¢? is the
variance of the weight w;. If we replace the variance g with estimate s? (sum of squares of weights
of events in the ith bin) and the hypothesis of identity is valid, then the maximum likelihood esti-
mator of p;,i =1,...,r,is

—Nﬁz-i- (Ww; —N )2+4W2 N
pi = \/ S il ¥ . (3.1)

We may then use the test statistic

NpI

Xzzi; N zl

and it is plausible that this has approximately a X(erl) distribution.

This test, as well as the original one [[], has a restriction on the expected frequencies. The
expected frequencies recommended for the weighted histogram is more than 25. The value of
the minimal expected frequency can be decreased down to 10 for the case when the weights of the
events are close to constant. In the case of a weighted histogram if the number of events is unknown,
then we can apply this recommendation for the equivalent number of events as n™™" = w2/s.

WpI

(3.2)
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The minimal expected frequency for an unweighted histogram must be 1. Notice that any usual
(unweighted) histogram can be considered as a weighted histogram with events that have constant
weights equal to 1.

The variance Z* of the difference between the weight w; and the estimated expectation value
of the weight is approximately equal to:

2
2 = Var(w W) = le—Npi)( W )
/(NS —wiw)2 + awaen
g NS W ) (3.3)
+Z<1+ — ) .
\/(Nﬁz —WW)2 +4W2$12ni
The residuals Wb

ri:% (3.4)

have approximately a normal distribution with mean equal to 0 and standard deviation equal to 1.

4. Two weighted histograms comparison

Let us denote the common weight of events of the ith bin in the first histogram as wy; and as
Wy in the second one. The total weight of events in the first histogram is equal to Wy = ¥{_; wy;,
and W, = Y7_; wy; in the second histogram.

Let us formulate the hypothesis of identity of weighted histograms so that there exist r con-
stants py, ..., pr, such that ${_; pi = 1, and also expectation value of weight wy; equal to W4 p; and
expectation value of weight wy; equal to W5 p;. Weights in both the histograms are random variables
with distributions which can be approximated by a normal probability distribution .4 (Wlpi,aﬁ)
for the first histogram and by a distribution .4 (Wxpi, 02) for the second. Here 0% and o2 are the
variances of wy; and wy with estimators s, and s3; respectively. If the hypothesis of |dent|ty is
valid, then the maximum likelihood and Least Square Method estimator of p;,i = 1,. is

o Wi /ST + Wb /S5,
T TwW g W

(4.1)
We may then use the test statistic
(Waw; — Wowy; )

2w (Wi —
X :i; +21 Zl WS + WS,

and it is plausible that this has approximately a X dlstrlbutlon The normalized or studentised
residuals [B

Wl p| (Woi — WZ p|

(4.2)

W1p|
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have approximately a normal distribution with mean equal to 0 and standard deviation 1. A recom-
mended minimal expected frequency is equal to 25 for the proposed test.

(4.3)
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Figure 1: An example of comparison of the unweighted histogram with 200 events and the weighted
histogram with 500 events: a) unweighted histogram; b) weighted histogram; c¢) normalized residuals
plot;  d) normal Q-Q plot of residuals.

5. Numerical example and experiments

The method described herein is now illustrated with an example. We take a distribution

2 1
x—10)2+1 * (x—14)2+1

P(x) = ( (5.1)
defined on the interval [4,16]. Events distributed according to the formula (5.2)) are simulated
to create the unweighted histogram. Uniformly distributed events are simulated for the weighted
histogram with weights calculated by formula (b.1). Each histogram has the same number of bins:
20. Fig. 1 shows the result of comparison of the unweighted histogram with 200 events (minimal
expected frequency equal to one) and the weighted histogram with 500 events (minimal expected
frequency equal to 25)

The value of the test statistic X is equal to 21.09 with p-value equal to 0.33, therefore the
hypothesis of identity of the two histograms can be accepted. The behavior of the normalized
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Figure 2: Chi-square Q-Q plots of X2 statistics for two unweighted histograms with different minimal
expected frequencies.

residuals plot (see Fig. 1c) and the normal Q-Q plot (see Fig. 1d) of residuals are regular and we
cannot identify the outliers or bins with a big influence on X?2.

To investigate the dependence of the distribution of the test statistics from the number of events
all three tests were considered.

The comparison of pairs of unweighted histograms with different minimal expected frequen-
cies was considered (Pearson’s chi square test). Unweighted histograms with minimal expected
frequencies equal to one (200 events), 2.5 (500 events) and 5 (1000 events) where simulated.

Fig. 2 shows the Q-Q plots of X? statistics for different pairs of histograms. In each case 10000
pairs of histograms were simulated.

As we can see for all cases the real distributions of test statistics are close to the theoretical
X%, distribution.

The comparison of pairs of unweighted and weighted histograms with different minimal ex-
pected frequencies was considered using the test proposed in section 3 above. Unweighted his-
tograms with minimal expected frequencies equal to one (200 events), 2.5 (500 events) and 5
(1000 events) where simulated. Furthermore weighted histograms with minimal expected frequen-
cies equal to 10 (200 events), 25 (500 events) and 50 (1000 events) where simulated. Fig. 3 shows
the Q-Q plots of X2 statistics for different pairs of histograms. As we can see the real distribution
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Figure 3: Chi-square Q-Q plots of X2 statistics for unweighted and weighted histograms with different
minimal expected frequencies.

of test statistics obtained for minimal expected frequency of weighted events, equal to 10, has a
heavier tail than the theoretical x2, distribution. This means that the p-value calculated with the
theoretical ng distribution is lower than the real p-value and any decision about the rejection of the
hypothesis of identity of the two distributions is conservative. The distributions of test statistics for
the minimal expected frequencies 25 and 50 are close to the theoretical distribution. This confirms
that the minimal expected frequency 25 is reasonable restriction for the weighted histogram for this
test.

The comparison of two weighted histograms with different minimal expected frequencies was
considered using the test proposed in section 4 above. Weighted histograms with minimal expected
frequencies equal to 10 (200 events), 25 (500 events) and 50 (1000 events) where simulated. Fig. 4
shows the Q-Q plots of X? statistics for different pairs of histograms. As we can see the real distri-
butions of the test statistics are close to the theoretical x2, distribution if the minimal expectations
of the two histograms are close to each other, it is in all cases excluding case (10, 50). For the case
when the difference in expectations are big (10, 50) the real distribution of the test statistics has a
heavier tail than the theoretical xZ.

To verify the proposed tests two further numerical experiments were performed. For the first
case unweighted histograms with minimal expected frequencies equal to 10 (2000 events), 25 (5000
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Figure4: Chi-square Q-Q plots of X statistics for two weighted histograms with different minimal expected
frequencies.

events) and 50 (10000 events) were simulated. These histograms were compared to an unweighted
histogram with 10 or more expected frequencies by the three methods described above. Fig. 5
shows the Q-Q plots of X2 statistics for different pairs of histograms. As we can see the real
distributions of the test statistics are close to the theoretical x2, distribution for all three tests.

For the second case unweighted histograms with minimal expected frequencies equal to one
(200 events), 2.5 (500 events) and 5 (1000 events) were simulated. These histograms were com-
pared to an unweighted histogram with 10 or more expected frequencies by the first two methods
described above. Fig. 6 shows the Q-Q plots of the X2 statistics for different pairs of histograms.
As we can see for all cases the real distributions of the test statistics are close to the theoretical
x129 distribution. Also the real distributions of the test statistics for the proposed method of com-
parison of unweighted and weighted histograms (see Fig. 6b) do not have heavy tails as is the
case for a weighted histogram with weights calculated according formula (6.3) (see Fig. 3). This
example confirms that the minimal expected frequency equal to 10 is enough for the application of
the method of comparison of unweighted and weighted histograms if the weights of the events are
close to a constant for the weighted histogram.
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Figure5: Chi-square Q-Q plots of X2 statistics for two unweighted histograms with different tests: a) Pear-
son’s chi square test; b) proposed in this article test for unweighted and weighted histograms; c) proposed in
this article test for two weighted histograms.

6. Conclusions

A chi square test for comparing the usual (unweighted) histogram and the weighted histogram,
together with a test for comparing two weighted histograms were proposed. In both cases formu-
las for normalized residuals were presented that can be useful for the identifications of bins that
are outliers, or bins that have a big influence on X2. For the first test the recommended minimal
expected frequency of events is equal to 1 for an unweighted histogram and 25 for a weighted
histogram. For the second test the recommended minimal expected frequency is equal to 25. Nu-
merical examples illustrated an application of the method for the histograms with different statistics
of events and confirm that the proposed restrictions related with the expectations are reasonable.
The developed approach can be generalized for a comparison of several unweighted and weighted
histograms or just weighted histograms. The X? statistic has approximately a X(Zr—l)(s—l) distribu-
tion for s histograms with r bins.

The proposed in this paper tests are available in the ROOT framework under the class
TH1:Chi2Test [[1]
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Figure 6: Chi-square Q-Q plots of X2 statistics for two unweighted histograms with different tests: a)
Pearson’s chi square test; b) proposed in this article test for unweighted and weighted histograms.
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