
P
o
S
(
A
C
A
T
)
0
6
2

The Transform between the space of observed
values and the space of possible values of the
parameter

Sergey I. Bityukov∗†

Institute for high energy physics, 142281 Protvino, Russia
Email: Serguei.Bitioukov@cern.ch

Nikolai V. Krasnikov
Institute for nuclear research RAS, Moscow, Russia
E-mail: Nikolai.Krasnikov@cern.ch

Vera V. Smirnova
Institute for high energy physics, 142281 Protvino, Russia E-mail:
Vera.Smirnova@ihep.ru

Vera A. Taperechkina

Moscow State University of instrument engineering and computer science, Moscow, Russia

In ref [1] the notion of statistically dual distributions is introduced. The reconstruction of con-
fidence density [2] for the location parameter for several pairs of statistically dual distributions
(Poisson and Gamma, normal and normal, Cauchy and Cauchy, Laplace and Laplace) in the case
of single observation of the random variable is a unique. It allows to introduce the Transform
between the space of observed values and the space of possible values of the parameter.

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
April 23-27 2007
Amsterdam, the Netherlands

∗Speaker.
†This work has been supported by grants RFBR 07-02-00256-a.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:Serguei.Bitioukov@cern.ch
mailto:Nikolai.Krasnikov@cern.ch
mailto:Vera.Smirnova@ihep.ru


P
o
S
(
A
C
A
T
)
0
6
2

The Transform between the space of Sergey I. Bityukov

1. Introduction

As it is shown in refs. [3, 4], in the framework of frequentist approach we can construct the
probability distribution of the possible magnitudes of the Poisson distribution parameter to give
the observed number of events n̂ in a Poisson stream of events. This distribution, which can be
called a confidence density function of a parameter, is described by a Gamma-distribution with
the probability density function which looks like Poisson distribution of probabilities. This is the
reason for naming this pair of distributions as statistically dual distributions. Also, the interrela-
tion between the Poisson and Gamma distributions allows to reconstruct the confidence density
of the Poisson distribution parameter in a unique way [1] and, correspondingly, to construct any
confidence interval for the parameter 1.

According to B. Efron [5] the confidence density is the fiducial [6] distribution of the parame-
ter. This distribution is considered as a genuine a posterior density for the parameter without prior
assumptions. More detail the confidence distributions is considered in ref. [7].

The same relation, which allows one to reconstruct the confidence density of a parameter in a
unique way, exists between several pairs of statistically self-dual distributions (normal and normal,
Laplace and Laplace and Cauchy and Cauchy). As consequence, the Transform between the space
of realizations of the random variable and the space of possible values of the parameter takes
place [2, 8] in this case.

Note that the posterior distribution of the parameter is also used for the definition of conjugate
families in the Bayesian approach. The interrelation between the statistically dual distributions and
conjugate families is discussed in ref. [2].

The notion “statistically dual distributions” is introduced in the next Section. Section 3 de-
scribes the Transform between the space of realizations of the random variable and the space of
possible values of the parameter. The method of the confidence density construction for signal
with known background is shown in Section 4 as an example of the Transform application. In
Section 5 the confidence density and the Bayes’ Theorem are used for estimation of the uncertainty
in distinguishing of two simple hypotheses under the experiment planning [9].

2. Statistically dual distributions

Let us define statistically dual distributions.
Definition 1: Let φ(x,θ) be a function of two variables. If the same function can be considered

both as a family of the probability density functions (pdf) f (x|θ) of the random variable x with
parameter θ and as another family of pdf’s f̃ (θ |x) of the random variable θ with parameter x (i.e.
φ(x,θ) = f (x|θ) = f̃ (θ |x)), then this pair of families of distributions can be named as statistically
dual distributions.

The statistical duality of Poisson and Gamma-distributions follows from simple discourse.
Let us consider the Gamma-distribution Γ1,n+1 with probability density [9]

1If we have the procedure which states the one-to-one conformity between the observed value of random variable
and the confidence interval of any level of significance then we can reconstruct the confidence density of the parameter
in single way. Confidence density contains more information than confidence interval.
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gn(µ) =
µn

n! e−µ
, µ > 0, n > −1. (2.1)

It is a common supposition that the probability of observing n events in the experiment is
described by Poisson distribution with parameter µ , i.e.

f (n|µ) =
µn

n! e−µ
, µ > 0, n ≥ 0. (2.2)

One can see that if the parameter and variable in Eq. (2.1) and Eq. (2.2) are exchanged, in
other respects the formulae are identical. As a result these distributions (Gamma and Poisson) are
statistically dual distributions.

These distributions are connected by the identity [3] (see, also, this identity in another form in
refs. [10, 11, 12])

∞

∑
i=n̂+1

f (i|µ1)+
∫ µ2

µ1
gn̂(µ)dµ +

n̂

∑
i=0

f (i|µ2) = 1, (2.3)

i.e.

∞

∑
i=n̂+1

µ i
1e−µ1

i! +
∫ µ2

µ1

µ n̂e−µ

n̂! dµ +
n̂

∑
i=0

µ i
2e−µ2

i! = 1

for any real µ1 ≥ 0 and µ2 ≥ 0 and non-negative integer n̂. We can suppose that n̂ is a number of
observed events.

The definition of the confidence interval (µ1,µ2) for the Poisson distribution parameter µ
using [3, 2]

P(µ1 ≤ µ ≤ µ2|n̂) = P(i ≤ n̂|µ1)−P(i ≤ n̂|µ2), (2.4)

where P(i ≤ n̂|µ) =
n̂

∑
i=0

µ ie−µ

i! , allows one to show that a Gamma-distribution Γ1,1+n̂ is the prob-

ability distribution of different values of µ parameter of Poisson distribution under condition that
the observed value of the number of events is equal to n̂, i.e. Γ1,1+n̂ is the confidence density
of the parameter µ . This definition is consistent with the identity Eq. (2.3). Note, if we suppose
in Eq. (2.3) that µ1 = µ2 we have a conservation of probability. The right-hand side of Eq. (2.4)
determines the frequentist sense of this definition.

Let us consider, for example, the Cauchy distribution with unknown parameter θ and known
parameter b. Here we also can exchange the parameter θ and variable x while conserving the same
formula of the probability distribution.

The probability density of the Cauchy distribution is

C(x|θ) =
b

π(b2 +(x−θ)2)
. (2.5)

The probability density of its statistically dual distribution is also the Cauchy distribution:

C̃(θ |x) =
b

π(b2 +(x−θ)2)
. (2.6)
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In this a way the Cauchy distribution can be named as statistically self-dual distribution. An
identity like Eq. (2.3) also holds in another form,

∫ x̂−δ1

−∞
C(x|x̂)dx+

∫ x̂+δ2

x̂−δ1
C̃(θ |x̂)dθ +

∫ ∞

x̂+δ2
C(x|x̂)dx = 1, (2.7)

where x̂ is the observed value of random variable x, x̂−δ1 and x̂+δ2 are bounds of the confidence
interval for location parameter θ , and C̃(θ |x̂) is the confidence density.

Such identity (2.7) is a property of statistically self-dual distributions, namely, Cauchy and
Cauchy, normal and normal, Laplace and Laplace.

3. The Transform between the space of observed values and the space of possible
values of the parameter

It is easy to show that the reconstruction of the confidence density is unique if Eqs. (2.3) or
(2.7) hold [1, 2].

As a result we have the Transform (both for Poisson-Gamma pair of families of distributions
and for statistically self-dual distributions)

f̃ (θ |x̂) = Tcd x̂ (3.1)

between the space of the realizations x̂ of random variable x (with the probability density f (x|θ))
and the space of the possible values of the parameter θ (with the confidence density f̃ (θ |x̂)). Here
f (x|θ) is the probability density of either normal, or Cachy, or Laplace distribution and f̃ (θ |x̂) is
the corresponding confidence distribution.

The Transform Eq. (3.1) allows one to use statistical inferences about the random variable for
estimation of an unknown parameter.

The simplest examples of this are given by several infinitely divisible distributions.
Definition 2: A distribution F is infinitely divisible if for each n there exist a distribution

function Fn such that F is the n-fold convolution of Fn.
As it is known the Poisson, Gamma-, normal and Cauchy distributions are infinitely divisible

distributions. The sum of independent and identically distributed random variables, which obey one
of the families of distributions above, also obeys the distribution from the same family. Application
of the Transform Eq. (3.1) to this sum allows one to reconstruct the confidence density of the
parameter in the case of several observation of the same random variable. It means that we construct
the relation

f̃ (nθ |x̂1 + x̂2 + . . .+ x̂n) = Tcd(x̂1 + x̂2 + . . .+ x̂n), (3.2)

where Tcd is the operator of the Transform Eq. (3.1), the set x̂1, x̂2, . . . , x̂n are the observed values.
Thereafter we reconstruct the confidence density of θ , i.e. f̃ (θ |x̂1, x̂2, . . . , x̂n).

The use of the confidence density also can be formulated in Bayesian framework.
Let us consider, as an example, the Cauchy distribution. In our approach we suppose that the

parameter θ is not a random value and before the measurement we do not prefer any of values of
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this parameter, i.e. possible values of the parameter have equal probability and a prior distribution
of θ is π(θ) = const. Suppose we observe x̂1 and update our prior via the Transform Eq. (3.1) to
obtain C̃(θ |x̂1), which is the pdf of the Cauchy distribution. This becomes our new prior before
observing x̂2. It is easy to show that in the case of the observing x̂2 the reconstructed confidence
density (or our next new prior) C̃(2θ |x̂1 + x̂2)

2 also is the pdf of the Cauchy distribution. By in-
duction this argument extends to sequences of any number of observations

C̃(nθ |x̂1 + x̂2 + . . .+ x̂n) = Tcd(x̂1 + x̂2 + . . .+ x̂n),

i.e. we use the iterative procedure

C̃(θ |x̂1, x̂2, . . . , x̂n−1, x̂n) = Tpd(C̃(θ |x̂1, x̂2, . . . , x̂n−1), x̂n), (3.3)

where Tpd is the operator of the Transform between a prior density and a posterior density of the
parameter.

Note that a prior density here is only the result of direct calculations of probabilities in frame
of the Transform Tpd with the usage of the knowledge about the law of distribution of the random
variable, i.e. we construct the confidence density without any suppositions about a prior (“uniform
prior” is not a prior density because if π(θ) = const then

∫ ∞
−∞( or 0) π(θ)dθ = ∞). On the other

hand, a prior knowledge about the law of distribution of the parameter in the case of the random
origin of parameter can be used for construction of the confidence density.

4. The method of confidence density construction for a signal with known
background

The confidence density is more informative notion than the confidence interval and gives many
advantages in the construction of the confidence intervals. For example, the Gamma-distribution
Γ1,n̂+1 is the confidence density of the parameter of Poisson distribution in the case of the n̂ ob-
served events from the Poisson flow of events [3, 4]. It means that we can reconstruct any con-
fidence intervals (shortest, central, with optimal coverage, . . . ) by the direct calculation of the
probability density of Gamma-distribution.

The next example illustrates the advantages of the confidence density construction. Let us
consider the Poisson distribution with two components: the signal component with a parameter
µs and background component with a parameter µb, where µb is known. To construct confidence
intervals for the parameter µs of a signal in the case of observed value n̂, we must find the confidence
density P(µs|n̂).

Firstly let us consider the simplest case n̂ = ŝ + b̂ = 1. Here ŝ is the number of signal events
and b̂ is the number of background events among the observed number n̂ of events.

2As it is known, if C(x1|θ1,b1) = b1
π(b2

1+(x1−θ1)2)
and C(x2|θ2,b2) = b2

π(b2
2+(x2−θ2)2)

then C(x1 + x2|θ1 +

θ2,b1 + b2) = b1+b2
π((b1+b2)2+((x1+x2)−(θ1+θ2))2)

with statistically dual distribution C̃(θ1 + θ2|x1 + x2,b1 + b2) =
b1+b2

π((b1+b2)2+((x1+x2)−(θ1+θ2))2)
. It means that we can reconstruct C̃(θ |x̂1, x̂2) using C̃(2θ |x̂1 + x̂2,2b) (in our case

θ1 = θ2 = θ and b1 = b2 = b).
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b̂ can be equal to 0 and 1. We know that b̂ is equal to 0 with probability (Eq.(2))

p0 = f (b̂ = 0|µb) =
µ0

b

0! e−µb = e−µb (4.1)

and b̂ is equal to 1 with probability

p1 = f (b̂ = 1|µb) =
µ1

b

1! e−µb = µbe−µb . (4.2)

Correspondingly, P(b̂ = 0|n̂ = 1) = P(ŝ = 1|n̂ = 1) =
p0

p0 + p1
and

P(b̂ = 1|n̂ = 1) = P(ŝ = 0|n̂ = 1) =
p1

p0 + p1
.

It means that the distribution of the confidence density P(µs|n̂ = 1) is equal to the sum of
distributions

P(ŝ = 1|n̂ = 1)Γ1,2 +P(ŝ = 0|n̂ = 1)Γ1,1 =
p0

p0 + p1
Γ1,2 +

p1
p0 + p1

Γ1,1, (4.3)

where Γ1,1 is the Gamma distribution with the probability density gŝ=0(µs) = e−µs and Γ1,2 is
the Gamma distribution with the probability density gŝ=1(µs) = µse

−µs . As a result, we have the
confidence density of the parameter µs

P(µs|n̂ = 1) =
µs + µb

1+ µb
e−µs . (4.4)

Using the formula (Eq.(15)) for P(µs|n̂ = 1) and formula (Eq.(4)), we construct the shortest
confidence interval of any confidence level in a trivial way.

In this manner we can construct the confidence density P(µs|n̂) for any values of n̂ and µb. We
have obtained the known formula [13, 14, 15]

P(µs|n̂) =
(µs + µb)

n̂

n̂!
n̂

∑
i=0

µ i
b

i!

e−µs . (4.5)

The numerical results for the confidence intervals are shown in Table 1.

5. The “Inverse Transform”

In this Section the approach to estimation of quality of planned experiments [9] is used to show
the possibility of the “Inverse Transform”. This approach is based on the analysis of uncertainty,
which will take place under the future hypotheses testing about the existence of a new phenomenon
in Nature. We consider a simple statistical hypothesis H0: new physics is present in Nature (i.e. µ =

µs + µb in the Eq.(2)) against a simple alternative hypothesis H1: new physics is absent (µ = µb).
The value of uncertainty is determined by the values of the probability to reject the hypothesis H0
when it is true (Type I error α) and the probability to accept the hypothesis H0 when the hypothesis
H1 is true (Type II error β ). This uncertainty characterises the distinguishability of the hypotheses
under the given choice of critical area.
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n̂\µb 0.0 1.0 2.0 6.0 12.0 15.0
0 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30 0.00, 2.30
1 0.09, 3.93 0.00, 3.27 0.00, 3.00 0.00, 2.63 0.00, 2.48 0.00, 2.45
2 0.44, 5.48 0.00, 4.44 0.00, 3.88 0.00, 3.01 0.00, 2.68 0.00, 2.61
3 0.93, 6.94 0.00, 5.71 0.00, 4.93 0.00, 3.48 0.00, 2.91 0.00, 2.78
4 1.51, 8.36 0.51, 7.29 0.00, 6.09 0.00, 4.04 0.00, 3.16 0.00, 2.98
5 2.12, 9.71 1.15, 8.73 0.20, 7.47 0.00, 4.71 0.00, 3.46 0.00, 3.20
6 2.78,11.05 1.79,10.07 0.83, 9.01 0.00, 5.49 0.00, 3.80 0.00, 3.46
7 3.47,12.38 2.47,11.38 1.49,10.37 0.00, 6.38 0.00, 4.19 0.00, 3.74
8 4.16,13.65 3.18,12.68 2.20,11.69 0.00, 7.35 0.00, 4.64 0.00, 4.06
9 4.91,14.95 3.91,13.96 2.90,12.94 0.00, 8.41 0.00, 5.15 0.00, 4.42

10 5.64,16.21 4.66,15.22 3.66,14.22 0.02, 9.53 0.00, 5.73 0.00, 4.83
20 13.50,28.33 12.53,27.34 11.53,26.34 7.53,22.34 1.70,16.08 0.00,12.31

Table 1: 90% C.L. intervals for the Poisson signal mean µs, for total events observed n̂, for known mean
background µb ranging from 0 to 15.

Let both values µs and µb, which are defined in the previous Section, be exactly known. In this
simplest case the errors of Type I and II, which will take place in testing of hypothesis H0 versus
hypothesis H1, can be written as follows:



















α =
nc

∑
i=0

f (i|µs + µb),

β = 1−
nc

∑
i=0

f (i|µb),

(5.1)

where nc is a critical value and f (i|µ) is defined by the Eq.(2).
Let the values µ̂s = ŝ and µ̂b = b̂ be known, for example, from Monte Carlo experiment with

integral luminosity which is exactly the same as the data luminosity later in the planned experiment.
It means that we must include the uncertainties in values µs and µb to the system of the equations
Eqs.(17). As it is shown in ref. [9] (see, also, the generalised case in the same reference) we have
the system























α =
∫ ∞

0
gŝ+b̂(λ )

nc

∑
i=0

f (i|λ )dλ =
nc

∑
i=0

Ci
ŝ+b̂+i

2ŝ+b̂+i+1
,

β = 1−
∫ ∞

0
gb̂(λ )

nc

∑
i=0

f (i|λ )dλ = 1−
nc

∑
i=0

Ci
b̂+i

2b̂+i+1
,

(5.2)

where the critical value nc under the future hypotheses testing about the observability can be chosen
in accordance with the test of equal probability [16] and Ci

N is N!
i!(N − i)! .

Note, here the Poisson distribution is a prior distribution of the expected probabilities and the
negative binomial (Pascal) distribution is a posterior distribution of the expected probabilities of
the random variable. This transformation of the estimated confidence densities g ŝ+b̂(λ ) and gb̂(λ )
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(probability densities of the corresponding Γ−distributions) to the space of the expected values of
the random variable can be named the “Inverse Transform”.

6. Conclusions

We have shown that the statistical duality allows one to connect the estimation of the parameter
with the measurement of the random variable of the distribution due to the Transform Eq. (3.1). It
gives the tool to construct the confidence densities.

The usage of the confidence densities for the construction of the confidence intervals and for
the construction of a posterior distributions of probabilities is presented in examples.
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