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1. Introduction

1.1 Higgs boson production at LHC

At LHC, in the Minimal Supersymmetric Standard Model, MSSM,the heavy neutral Higgs
boson production in association with two b quarks is the dominant Higgs boson production mech-
anism at large values of tanβ . These associated b jets can be used to extract the Higgs events from
the Drell-Yan Z/γ∗ background, for which the associated jets are mostly light quark and gluon jets.
(More detailed description of physics relevant to this workcan be found from [1] and references
therein.)

1.2 b-tagging

In standard methodology a jet can be identified as a b jet usinglifetime based tagging al-
gorithm, which relies on displaced secondary vertices and track impact parameter,ip. Impact
parameter is the closest approach of the track trajectory tothe primary vertex. For a review of the
main algorithms for inclusive b-tagging based on trackip and secondary vertex, see refs. [2] and
[3]. Figure 1 demonstrates the case in the Compact Muon Solenoid experiment at LHC.

Figure 1: Left: Geant4 based simulation of a SUSY event in the CMS detector containing missing transverse
energy, jets and several leptons in the barrel detector. (Picture: IguanaCMS.)Right: A displaced secondary
vertex in a b̄bH event with H→ ττ in the CMS detector. The second b jet is not reconstructed dueto a low
jet energy and track multiplicity.

In high energy physics, contrary to popular neural network approach using Multi Layer Per-
ceptron technique (see for example refs. [4, 5, 6, 7]), only few authors have reported on the use of
the self-organized maps to separate a background from a signal. Though some promising results
have been reported [8, 9, 10, 11]. This work is motivated by these few realizations of SOM based
data analysis in HEP domain, and by the fact that SOM, also known as Kohonen network, can
provide computationally more simple algorithm, with learning rate faster than what MLPs have.
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2. Self-organizing maps

The most popular unsupervised neural network algorithm SOM[12, 13], provides a compu-
tationally simple algorithm, with fast learning rate. SOM defines a mapping fromm -dimensional
input data space onto a regular two-dimensional array of neurons:

• Every neuron of the map is associated with anm-dimensional reference vector.

• The neurons of the map are connected to adjacent neurons by a neighborhood relation, which
dictates the topology of the map.

• During the unsupervised training phase, the SOM forms an elastic net that folds onto the
cloud formed by input data and approximates the density of the data.

2.1 Competitive process

The SOM defines a mapping from the input data spacex = [x1,x2, ...,xm]T onto a regular two-
dimensional array of nodes. The synaptic weight vectorw j = [w j1,w j2, ...,w jm]T , j = 1,2, ..., l of
each neuronj has the same dimension as the input space;l is a total number of neurons.

Selecting the neuron with the largest inner productwT
j x, is mathematically equivalent to min-

imizing the Euclidean distance between the input vectorsx andw j. Thus, the winning neuronc is
defined as:

c = arg min j||x−w j||.

Essentially this sums up the competition process among the neurons, where the best-matching
node locates the center of a topological neighborhood [12].

2.2 Adaptive process

During the learning, those nodes that are topographically close to a certain distance will acti-
vate each other to learn from the same input. Using discrete-time formalism, weight vector at time
t is written asw j(t), and updated weight vector is defined as:

w j(t +1) = w j(t)+ h jc(t)[x−w j(t)],

whereh jc(t) is neighborhood kernel. For details of SOM see ref. [14].

2.3 Advantages of using unsupervised learning

Unsupervised neural methods can be used in exploratory data-analysis, when we want to post-
pone the usual assumptions about what kind of model the data follow. In HEP applications we
often have particularly challenging data mining problems where a priori information (for example
the number of clusters in data) of the data sample is limited.Thus, unsupervised clustering has
a potential to help us in searches of a signal of supersymmetry or another kind of new physics at
LHC.
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3. b-tagging with SOMs

3.1 Event data

In our SOM approach we feed SOM network with the same events and seven variables as used
in the traditional track counting algorithm:

• Number of tracks in the jet cone (In the following we denote this with variable index 2 orv2)

• Impact parameters,ips, (v4, v7, v10, see fig. 2) and relatedip significances,σips, (v5, v8,
v11) for three leading tracks.

Figure 2: An example of variables used in the SOM teaching.Left: A leading trackip distribution for a
signal and background events (v4). Right: ip for next leading track (v7).

3.2 Data preprocessing

We made a brief study using TMVA [15] to preprocess the training data, to assess basic prop-
erties of the discriminating variables used as input. The linear correlation coefficients of the input
variables were calculated and displayed (fig. 3) and a preliminary ranking was derived.

Since the findings supported our previous understanding of the data (see fig. 5) we proceeded
without additional preprocessing of data, and used the straightforward approach adopted in the
previous study [16]. In future studies we plan to perform more detailed linear transformation of the
variables into a non-correlated variable space, before entering to SOM learning phase.

3.3 SOM_PAK

We used a SOM_PAK [18] tool to analyze data created with a CMS ORCA [2] simulation
package, using full simulation with track and jet reconstruction.

The signal and background event variables described above were fed to the SOM_PAK using
a robust ASCII data format (fig.4). 40k events were used for teaching and 40k events were reserved
for testing.
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Figure 3: Correlation between 3rd best reconstructed trackip (v10) vs.σip (v11).

Figure 4: Data format used by SOM_PAK. We see how SOM provides a naturalway to treat incomplete
event data.

4. Results

The b tagging efficiency with SOM was found to be 73 % with 11 % mistagging rate. We
were able to filter 45 % of the background events with 0.2% misclassification probability for the
signal. In figs. 6 and 7, which visualize SOM activation with test data, a clear separation to signal
and background regions is seen. These results can be compared with typical counting algorithms
performance 35 % efficiency with 1 % mistagging propability reported in [1, 16, 17].

5



P
o
S
(
A
C
A
T
)
0
6
5

Separation of Higgs boson signal from Drell-Yan background with SOMs Aatos Heikkinen

Figure 5: The significance of variables found using supervised MLP networks. We notice thatσips are
particularly significant for correct classification result. (Figure from [17].)

Figure 6: Number of signal events associated to winning node, while testing mapping of 15x15 node SOM
performance.

5. Conclusion

We have shown how unsupervised classification can be utilized successfully in b-tagging prob-
lems. In our study the self-organizing maps were able to separate the Higgs signal from the back-
ground, based on CMS Monte Carlo data.

SOM methodology, being somewhat orthogonal to other data-analysis methods, such as su-
pervised neural methods, shows a promise in HEP data mining,particularly for model free cases.

Recently, we have started an another promising approach in tagging b-jets with the use of a
ROOT Toolkit for Multivariate Data Analysis, TMVA, which isan exiting new tool working in
transparent factory mode guaranteeing an unbiased performance comparison, since all classifiers
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Figure 7: Number of background events associated to winning node, while testing mapping of 15x15 node
SOM performance.

are evaluated with the same training and test data. TMVA, allows us to apply not only neural
network classifiers but also projective and multi-dimensional likelihood estimators, linear discrim-
inant analysis with H-Matrix/Fisher discriminants, and boosted/bagged decision trees. The first
encouraging results applying TMVA transparent comparisons between various classifiers will be
presented in [19].
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