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We report on our recent results for deep-inelastic neutrino(ν)-proton(P) scattering. We have com-

puted the perturbative QCD corrections to three loops for the charged current structure functions

F2, FL andF3 for the combinationνP− ν̄P. In leading twist approximation we have calculated

the first six odd-integer Mellin moments in the case ofF2 andFL and the first six even-integer

moments in the case ofF3. As a new result we have obtained the coefficient functions toO(α3
s )

and we have found the corresponding anomalous dimensions toagree with known results in the

literature.
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1. Introduction

In our recent research, we extended the program of calculating higher order perturbative QCD
corrections to the structure functions of charged current deep-inelastic scattering (DIS). Our stud-
ies are motivated by the increasingly accurate measurements of neutral and charged current cross
sections at HERA with a polarized beam of electrons and positrons [1, 2, 3]. At the same time we
are also able to quantitatively improve predictions for physics at the front-end of a neutrino-factory,
see e.g. Ref. [4]. To be specific, we consider neutrino(ν)-proton(P) scattering in the combination
νP− ν̄P, which corresponds to charged lepton-proton DIS as far as QCD corrections are con-
cerned. Following Refs. [5, 6, 7, 8, 9] we compute the perturbative QCD (pQCD) predictions to
three-loop accuracy for a number of fixed Mellin moments of the structure functionsF2, FL andF3.

Within the framework of the operator product expansion (OPE), and working in Mellin space,
FνP−ν̄P

2 andFνP−ν̄P
L are functions of odd Mellin moments only, while only even moments con-

tribute toFνP−ν̄P
3 . This is opposite to the case of the neutral current structure functions where

only even Mellin moments contribute, and to the charged current case forνP+ ν̄P scattering [10],
which is defined through the OPE for odd Mellin moments only. In the latter results forFνP+ν̄P

2

and FνP+ν̄P
L to three-loops can also be directly checked in electromagnetic DIS [11, 12] while

parameterizations forFνP+ν̄P
3 to three-loop accuracy are given in Ref. [13].

2. General formalism

We consider unpolarized inclusive deep-inelastic lepton-nucleon scattering,

l(k) + nucl(p) → l ′(k′) + X , (2.1)

where l(k), l ′(k′) are leptons of momentak andk′, nucl(p) denotes a nucleon of momentump
andX stands for all hadronic states allowed by quantum number conservation. In our research we
are concentrating on charged current neutrino(ν)-proton(P) scattering, i.e.νP, ν̄P via W± boson
exchange. As is well known, the differential cross section for the reaction (2.1) can be written as a
product of leptonicLµν and hadronicWµν tensors

dσ ∝ LµνWµν , (2.2)

with Lµν for electroweak or pure electromagnetic gauge boson exchange given in the literature, see
e.g. Ref. [14]. The hadronic tensorWµν in Eq. (2.2) can be written in terms of so called structure
functionsFi, i = 2,3,L.

We are interested in the Mellin moments of structure functions, defined as

Fi(n,Q2) =

1
∫

0

dxxn−2Fi(x,Q
2) , i = 2,L (2.3)

and forF3(n,Q2) one has similar relation withn replaced byn+1 on the r.h.s. of Eq. (2.3). Here
Q2 = −q2 > 0, q = k− k′ andx is the Bjorken scaling variable defined asx = Q2/(2p · q) with
0 < x≤ 1.
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With the help of the optical theorem and Cauchy‘s theorem from complex analysis one can
relate the Mellin moments of structure functions to the parameters of the OPE for the nucleon
forward Compton amplitudeTµν :

Fi(n,Q2) = Ci,ns

(

n,
Q2

µ2 ,αs

)

Ans
nucl

(

n,µ2) , i = 2,3,L (2.4)

and the OPE forTµν reads as

Tµν = 2∑
n

ωn
[

eµν CL,ns

(

n,
Q2

µ2 ,αs

)

+dµν C2,ns

(

n,
Q2

µ2 ,αs

)

+ iεµναβ
pαqβ

p·q
C3,ns

(

n,
Q2

µ2 ,αs

)]

Ans
nucl

(

n,µ2)+higher twists, (2.5)

where higher twist contributions are omitted.Ci,ns denote the Wilson coefficients which are cal-
culable in pQCD andAns

nucl are matrix elements of quark non-singlet operators. The latter are not
calculable in pQCD, rather they have to be extracted from experimental data. We restrict ourselves
to quark non-singlet (ns) operators only since only these give nonvanishing contributions in the
combinationνP−νN (see Ref. [10] for details).

Eq. (2.4) provides the basis to obtain Mellin moments of DIS structure functions in our ap-
proach by means of the OPE and the optical theorem. Furthermore, from the careful examination of
the symmetry properties of the forward Compton amplitudeTµν and, related, the underlying Feyn-
man diagrams, one can convince oneself that for the charged currentνP−νN DIS, one encounters
functions of only oddn for F2 andFL and, functions of only evenn for F3, respectively [10].

The pQCD calculation of Wilson coefficientsCi,ns proceeds through the following steps. From
the first principles we calculate the partonic forward Compton amplitudetµν . The partonic equiv-
alent of the OPE Eq. (2.5) fortµν contains thesamecoefficientsCi,ns as in Eq. (2.5) and quark
matrix elementsAns

q . Projection on then’th Mellin moment of OPE and on thei’th parton invariant
(i = 2,3,L) with the help of the operatorPµν

n,i we get

ti,ns

(

n,
Q2

µ2 ,αs,ε
)

≡ P
µν
n,i tµν = Ci,ns

(

n,
Q2

µ2 ,αs,ε
)

Zns

(

αs,
1
ε

)

Ans,tree
q (n,ε) . (2.6)

Both sides of Eq. (2.6) are renormalized. In particular the renormalization of the local quark op-
erator matrix elementAns

q gives rise to the factorZns on the r.h.s. of Eq. (2.6). This equation is
our starting point for an iterative determination of the coefficient functionsCi,ns and the anomalous
dimensionγns. The latter appears in a series expansion ofZns in powers of the strong couplingαs

and negative powers of the parameterε of dimensional regularization,D = 4−2ε . TheCi,ens on
the other hand are expanded inαs and in positive powers ofε . Thus the l.h.s. of Eq. (2.6) leads to
a well defined determination ofCi,ensandZens in pQCD.

3. Calculation and checks

In the previous section, we have briefly explained the methodto obtain Mellin moments of the
DIS charged current structure functionsFνP−ν̄P

2 , FνP−ν̄P
3 andFνP−ν̄P

L together with their respective
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coefficient functions and anomalous dimensions. To that endwe have calculated the Lorentz in-
variants of the parton Compton amplitudeti,ens, i = 2,3,L, as given in the l.h.s. of Eq. (2.6). Due to
the large number of diagrams involved in the calculations upto orderα3

s sufficient automatization
is necessary. First of all, we have generated 3633 diagrams up to three loops with the program
QGRAF [15]. For all further calculations we have relied on the latest version of the symbolic
manipulation program FORM [16, 17].

For the treatment of QGRAF output, such as analysis of the topologies, the explicit implemen-
tation of Feynman rules etc. we have adapted a dedicated FORM procedureconv.prcfrom previous
work, e.g. Ref. [12]. Most importantly, this procedure tries to exploit as many symmetry properties
of the original Feynman diagrams as possible in order to reduce their total number.

For the calculation of the color factors for each Feynman diagram we have used the FORM

packagecolor.h [18]. The actual calculation of the Mellin moments of the Feynman integrals has
made use of the FORM version of MINCER [19]. Finally, on top of MINCER and MINOS [6] some
shell scripts managed the automatic runs of both programs for different parts of the calculation.

We have performed various checks on our computation. Most prominently, we have kept all
powers of the gauge parameterξ throughout the entire calculation for Mellin momentsn ≤ 10
to check that anyξ -dependence vanishes in our final results. The Mellin moments with n > 10
were calculated without gauge parameter to facilitate the computations which become increasingly
more complicated for higher Mellinn values. For these moments we also used TFORM [20], the
multi-threaded version of FORM. On machines with multi-core processors this leads to a significant
speed up of our calculations, e.g. a speed-up of≃ 5 on a two-core four processor machine.

We agree with the literature as far as the two-loop coefficient functions [21, 22, 23, 24, 25] and
the three-loop anomalous dimensions [26] are concerned. Inaddition, for the first Mellin moment
of the coefficient functionC2,enswe have obtained exactlyC2,ens= 1 to all orders inαs which is in
agreement with the Adler sum rule for DIS structure functions,

1
∫

0

dx
x

(

FνP
2 (x,Q2)−FνN

2 (x,Q2)

)

= 2. (3.1)

The Adler sum rule measures the isospin of the nucleon in the quark-parton model and does not
receive any perturbative or non-perturbative correctionsin QCD, see e.g. Ref. [27]. Therefore, this
result is another important check of the correctness of our results.

4. Conclusions

We have reported on new results for Mellin moments of the charged current DIS structure
functionsFνP−ν̄P

2 , FνP−ν̄P
L andFνP−ν̄P

3 including the perturbative QCD corrections to three loops.
In the former case (F2, FL) we have computed the first six odd-integer Mellin moments while
in the latter case (F3), the first six even-integer moments have been obtained. Theresults for
FνP−ν̄P

2,L n = 1,3,5,7,9 and forFνP−ν̄P
3 n = 2,4,6,8,10 are available in Ref. [10]. Results for

n = 11 in the former case and forn = 12 in the latter will be published elsewhere. Finally, the
discussion of phenomenological consequences of our Mellinspace results along with approximate
parameterizations the coefficient functions inx are deferred to Ref. [28].
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