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A picture has emerged connecting QSOs with Sub-Millimetre Galaxies (SMGs)[1,2] through an
evolutionary sequence in which forming galaxies are initially FIR-luminous but X-ray weak, sim-
ilar to known SMGs. As the black hole and spheroid grow with time, the central QSO becomes
powerful enough to terminate star formation and eject much of the fuel supply. The unobscured
QSO activity subsequently declines to leave a quiescent spheroidal galaxy. Here I describe paral-
lel investigations of space density, one for a sample of radio-loud QSOs (RQSOs), and a second
for SMGs. Each class shows both cosmic down-sizing and a redshift cutoff. The coincidence
in apparent epoch of creation is marked; if it does not prove a causal connection, it is at least
circumstantial evidence that the foregoing sequence is correct.
The RQSO sample was selected from the PKS 2.7-GHz survey over the southern hemisphere[3];
most of the 379 RQSOs of the complete sample have spectroscopic redshifts, and all are from
2.7-GHz survey areas complete to flux densities ranging from 0.10 to 0.6 Jy. The SMG sample
comprises a complete set of 35 objects from the GOODS-N supermap[4]; all have cross-waveband
identifications. Most of the 35 have spectroscopic redshifts, the remainder, spectrophotometric
redshift estimates. This is the first complete SMG sample for which space density analysis is
possible.
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Figure 1: Relative space density of RQSOs (black
line, grey shading), X-ray QSOs (blue crosses, cir-
cles), and SMGs (turquoise points); see [5] for details.

Figure 2: Space density vs redshift for dif-
ferent RQSO luminosities, showing cos-
mic down-sizing for the RQSO 379 sam-
ple. A maximum likelihood analysis in lu-
minosity bins (red curves) shows how the
peak epoch of dominant activity moves to
progressively lower redshifts as luminosity
decreases [JVW, in preparation]. The faint
green curve, repeated in each panel, shows
the space density behaviour for the entire
(unbinned) sample.

RQSO space density analysis was carried out using a ‘single-source survey’ technique[5], in
which each sample member was considered as the result of its very own survey. In this manner,
each source could be ascribed its particular survey flux limit and its own radio spectrum or K-
correction, the two providing a unique cutoff line in the luminosity - redshift (L− z) plane. The
contribution of each source to volume density could then be calculated.

Fig. 1 shows how dramatic the density change is with redshift – a rapid rise to the ‘quasar
epoch’ at redshift 1 to 2, followed by a decline in co-moving space density at redshifts beyond
3. This dramatic decline in space density at higher redshifts was subjected to bootstrap testing
of polynomial fits to combined sections of the luminosity functions; the significance level for this
decline is below 0.001. Flux density variation had to be carefully considered [5]. To examine
cosmic down-sizing, a maximum-likelihood modelling approach was needed, as used in the SMG
analysis below. This down-sizing is conclusive, as shown in Fig. 2 [JVW, in preparation].

Analysis of the SMG sample required a maximum-likelihood approach from the start; stan-
dard 1/Vmax analyses will not work, as shown by the luminosity – redshift plane of Fig. 3. Most
of the SMGs would be visible at any z, i.e. 1/Vmax ≈ 0. We [6] combined the single-source survey
technique with a maximum-likelihood analysis, assuming (a) Poisson distribution of the SMGs in
cells of the L− z plane, (b) a power law form for the luminosity function, and (c) an evolution
function for changing the luminosity function with redshift of the form (1+ z)(k+!z). This form
combines common power-law density evolution with a generic form of redshift cutoff if ! should
prove to be negative. We found the minimum in the likelihood function using a method of steepest
descent. Fig. 4 encapsulates the results.

The redshift cutoff parameter ! is negative at a significance level too small to measure. There
is a redshift cutoff for the SMGs, as their distribution in Fig. 3 suggests. The overall behaviour of
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Figure 3: Luminosity-redshift plane for the
GOODS-N 35 SMG sample. The diameter of each
point is proportional to log(L), and each line indi-
cates a survey cutoff limit for one of the SMGs.
Red points: log (L850µm/WHz−1sr−1) > 23.17;
black: log (L850µm/WHz−1sr−1) < 23.17.

Figure 4: SMG evolution. The points repre-
sent space densities over narrow redshift ranges,
assuming constant space density within these
ranges. The best-fit parameters yield the solid
green curve for the low-luminosity half of the
sample and the red curve for the high-luminosity
half. This splitting of the sample produced a very
significant improvement in the overall fit to space
densities – see text.

SMG space density is shown by the turquoise points in Fig. 1 and the blue points in Fig. 4.
We found (Fig. 4) a far more successful fit in modelling with two SMG sub-populations, di-

vided (a priori) at the median sample luminosity. This result came as a surprise from bootstrap
testing, which persistently showed bimodal distributions in probability planes of the model param-
eters. The higher-luminosity component shows much stronger evolution and a steeper slope for the
luminosity function. This indicates cosmic down-sizing for SMGs.

Both populations demonstrate:
1. Similar cosmological evolution, with a steep rise in space density to z= 1.5, followed by a

plateau to z∼ 3; and
2. A diminution in space density (level of significance <0.001) beyond z = 3. The form of

this density diminution is virtually coincident as shown in Fig. 1. At minimum this is circum-
stantial evidence that the objects are related, may have a common origin, and may be linked in an
evolutionary sequence such as that described in the introduction.

The further and surprising feature of the SMG space analysis is that the objects appear to
constitute two populations divided by luminosity. Perhaps these sub-populations are the high-
luminosity equivalents of nearby LIRGS and ULIRGS which are known to differ dramatically in
evolution properties, space densities and epoch-dependent star-formation rates[7]. Large SCUBAII
SMG samples will clarify these preliminary results.
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