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1. Scope of This Talk

In this talk, I will

1. summarize some theoretical advances made in establishing correlations between observables
of nuclei and neutron stars,

2. indicate how laboratory experiments, e.g., at JLab and Rare Isotope Accelerators (RIA’s),
can help to unravel the composition and structure of a neutron star,

3. point out how the observed masses (M′s) and radii (R′s) of several individual neutron stars
can be used to construct the model independent equation of state (EOS) of dense matter
(through an inversion process that I term as “Deconstructing a NeutronStar”), and

4. indicate the key neutron star observations that are necessary to take leaps in our understand-
ing of the nature of strong interactions at supra-nuclear densities.

2. The Pervasive Role of the Nuclear Symmetry Energy

The nuclear (a)symmetry energy

Esym(n,δ ) =
1
2n

∂ 2ε(n,x)
∂δ 2 , δ =

nn −np

n = np +nn
= 1−2x , (2.1)

represents the energy cost required to create an isospin asymmetryδ in nucleonic matter. Above,
nn andnp are the neutron and proton densities,x is the proton fraction in matter, andε(n,δ ) is the
energy density of isospin asymmetric matter. Figure 1 from Ref. [1] shows the energy per particle
of bulk nuclear(x = 1/2) and neutron matter(x = 0) versus the total baryon densityn.
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Figure 1: Results shown are for the microscopic potential model calculations of Akmal and Pandharipande
(APR) [2, 3] and simpler nonrelativistic and relativistic effective model fits (NRAPR and RAPR) [1].
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The physical properties of nuclei, such as their masses, neutron and proton density distribu-
tions (including their mean radii), collective excitations, fission properties, matter and momentum
flows in high energy heavy-ion collisions, etc. all depend on the isospin structure of the strong
interactions between nucleons (i.e.,nn and pp interactions versusnp interactions). The energy
µ̂ = µn − µp

∼= 4Esymδ , whereµn andµp are the neutron and proton chemical potentials, respec-
tively, is crucial in determining reaction rates involving electrons and neutrinos, particle abun-
dances, etc., in astrophysical contexts such as supernova dynamics, proto-neutron star evolution,
ther−process, the long-term cooling of neutron stars, and the structure of cold-catalyzed neutron
stars (i.e. their masses, radii and crustal extent), etc. The pervasive role of the isospin dependence
of strong interactions in nuclear processes in the laboratory and the cosmos is sketched in Fig. 2.
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Figure 2: The pervasive role of the nuclear symmetry energy. Figure taken from Ref. [1].

3. Connections to Neutron Star Structure

The structure of neutron stars is determined by the energy and pressureof charge-neutral beta-
stable matter, the nucleonic components of which can be written as

E(n,x) ∼= E(n,0.5)+Esym(n) (1−2x)2 + · · · ,

P(n,x) ∼= n2[

E ′(n,0.5)+E ′
sym (1−2x)2]+ · · · , (3.1)
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where the primes above refer to derivatives with respect to density. Leptonic (electrons and muons)
contributions must be added to Eq. (3.1) for the total energy and pressure. As demonstrated in
Ref. [4], the radius (but, not necessarily the mass) of a nucleonic neutron star is chiefly determined
by the pressure in the vicinity of the nuclear equilibrium density,n0 ≃ 0.16±0.01 fm−3, for which
the contribution of the first term to the pressure in Eq. (3.1) is very small. Thisfeature of a neu-
tron star’s structure highlights the importance of the density dependence ofthe nuclear symmetry
energy nearn0. Figure 3 shows the mass-radius relationships for select EOS models including the
cases in which extreme softening due to the presence of exotica such as hyperons, quarks or Bose
condensates occurs in the cores of stars.

Figure 3: Mass versus radius curves from Ref. [5]. EOS symbols are as inRef. [4].

In Fig. 4, the observed neutron star masses are shown. The simple and error weighted means
for neutron stars in x-ray binaries are 1.55 M⊙ and 1.37 M⊙, respectively. The corresponding
numbers for double neutron star binaries are 1.32 M⊙ and 1.41 M⊙, whereas for white dwarf -
neutron star binaries, the numbers are 1.60 M⊙ and 1.33 M⊙. It is unfortunate that in those cases
(e.g., binary radio pulsars) in which the masses are very accurately known, the corresponding
numbers for radii are unknown. It is hoped that with improvements in timing analysis, the moment
of inertia of the neutron star in the double-pulsar system J0737-3039 will become available [6]. As
will be shown later, the masses and radii of several individual neutron stars can uniquely pin down
the EOS of dense matter. For prospects of obtaining this much needed information, see the article
by Bob Rutledge in these proceedings. For prognosis of EOS determination,see Ref. [7].
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Figure 4: Observed neutron star masses. Figure courtesy of Lattimer.

4. The Role of Isospin Interactions in Nuclei and Neutron Stars

A few of the recently discovered empirical relationships that underscorethe role of isospin
interactions in nuclei and neutron stars are highlighted here.

The neutron skin thickness in nuclei and the sub-nuclear pressure of pure neutron matter

Typel and Brown [8, 9] have noted that model calculations of the difference between neutron
and proton rms radiiδR = 〈r2

n〉
1/2

−〈r2
p〉

1/2
are linearly correlated with the pressure of pure neu-

tron matter at a density belown0 characteristic of the mean density in the nuclear surface (e.g.,
0.1 fm−3). The density dependence of the symmetry energy controls the so-called neutron skin
thicknessδR in a heavy, neutron-rich nucleus. Explicitly,δR is proportional to a specific average
of [1−Esym(n0)/Esym(n)] in the nuclear surface, see Refs. [10, 1].

The left panel of Fig. 5 shows the Typel-Brown correlation extended to neutron-star matter
in Ref. [1] using both potential and field-theoretical models. The proposal [11, 12] at JLab to
measure the neutron rms radius of208Pb through parity-violating electron scattering experiments
to 1% accuracy (the rms charge radii of nuclei are known to better accuracy) can help to provide a
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Figure 5: Left panel: The neutron skin thicknessδR of finite nuclei versus the pressure ofβ -equilibrated
neutron star matter at a density of 0.1 fm−3. Right panel: Calculated neutron skin thicknessesδR of nuclei
versus the radii of 1.4M⊙ stars. Trends for stars up to the maximum mass are similar. The solid lines
represents a least square fit. Trends for stars up to the maximum mass are similar [1]. Figure taken from [1].

calibration pressure of neutron-star matter at sub-nuclear densities. The knowledge of neutron rms
radii for neutron-rich nuclei of varying masses will be of great help in establishing the uncertain
density dependence of isospin interactions at sub-nuclear densities. The right panel of Fig. 5 shows
that the correlation betweenδR and R1.4 is not very sharp. Accurate predictions of neutron star
radii require knowledge of the equation of state at supra-nuclear densities.

The neutron skin thickness in nuclei and the neutron star radius

Horowitz and Piekarewicz [13] have pointed out that models that yield smallerneutron skins in
heavy nuclei tend to yield smaller neutron star radii. These authors, along with others [14, 1], have
stressed the need for accurate measurements of the neutron skin thicknesses of nuclei. Although
the neutron star radii are determined at supra-nuclear densities, the calibration provided at sub-
nuclear densities cannot be ignored. Even with varying stiffness at highdensity, several works
have confirmed the trend shown in the right panel of Fig. 5. The Horowitz-Piekarewicz correlation
is thus very suggestive inasmuch as radii of stars up to the maximum mass exhibit similar trends. It
would be fruitful to test this correlation from accurate radius measurementsof neutron stars whose
corresponding masses are also well determined.

The neutron star radius R and the pressure P of neutron-star matter

Lattimer and Prakash [4] found that the quantityRP−1/4 is approximately constant, for a given
neutron star mass, for a wide variety of EOS’s when the pressureP of beta-equilibrated neutron-
star matter is evaluated at a density in the rangen0 to 2n0, wheren0 denotes equilibrium nuclear
matter density. Since the pressure of nearly pure neutron matter (a good approximation to neutron
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star matter) nearn0 is approximately given byn2E ′
sym (see Eq. (3.1)), the density dependence of

the symmetry energy just aboven0 will be a critical factor in determining the neutron star radius.
Figure 6 shows results for 1.4M⊙ stars. Similar trends persist for stars up to the maximum mass star
as shown in Ref. [4]. This correlation, coupled with accurate measurements of neutron star radii,
can delimit the very uncertain (up to a factor of 5!) pressure of neutron-star matter (see Ref. [4]) at
supra-nuclear densities.
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Figure 6: The quantityRP−α as a function of the stellar radiusR, for pressuresP determined at 3/2, 2
and 3 times equilibrium nuclear matter density. For each density, the best-fit value for the exponentα is as
indicated. Circled stars indicate the results obtained with the APR equation of state. These results are for
1.4M⊙ stars; results for stars up to the maximum mass star are similar. Figure taken from Ref. [1].

5. Deconstructing a Neutron Star

This section contains a report of on-going work of the speaker with Sergey Postnikov and
James Lattimer [15]. The question being posed here is “Can observations of the masses and radii
of several (say 5 to 7) individual stars uniquely determine the dense matterEOS?” In short, the
answer is a resounding YES! This assertion follows from the work of Lindblom [16] who exploited
the one-to-one correspondence between an EOS and theM−R curve generated through the use of
the Tolman-Oppenheimer-Volkov (TOV) [17, 18] equations of stellar structure. Given the diverse
theoretical predictions, it is of great interest to enquire whether or not observations of masses and
radii of several neutron stars can be used to uniquely pin down the poorly known high density
EOS. The extent to which inherent errors in measurements affect the extraction of the EOS (not
addressed in Lindblom’s work) will become an important issue.

Recently launched campaigns [19] to accurately measure masses and radiiof a large number
of neutron stars give impetus to investigate this inversion procedure in more depth than originally
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undertaken by Lindblom. The extension of such an inversion procedureto include other observ-
ables such as the surface redshifts, binding energies, moments of inertia,etc. has been undertaken
by Postnikov, Prakash and Lattimer incorporating the inherent errors involved in observations.

We begin by recasting the TOV equations of stellar structure using the variable h defined
throughdh = d p/(p+ρ(p)), wherep is the pressure andρ(p) is the mass-energy density. Adopt-
ing the unitsG = 1 andc = 1, the result is

dr2

dh
= −2r2 r−2m

m+4πr3p
,

dm
dh

= −4πr3ρ
r−2m

m+4πr3p
, (5.1)

wherep(h) andρ(h), which serve as input, contain the EOS. The advantages of this reformulation
(somewhat different than that used by Lindblom) are that the enclosed massm and radiusr are now
dependent (onh and thus the EOS) variables, andh is finite both at the center and surface of the
star. Furthermore, the quantitiesr2(h) andm(h) admit tractable Taylor expansions abouthc that
feature the finite quatitiespc, ρc and(dρ/dh)c, where the subscriptc denotes the star’s center.

The procedure is to begin with a known EOS up to a certain density, take small increments in
mass and radius, and adopt an iterative scheme based on Eq. (5.1) to reach the new known mass
and radius. In the absence of observational numbers for individual stars, a test of the above scheme
can be performed by assuming that the masses and radii are those that result from a model EOS.

We have tested our scheme using an EOS consisting of two polytropes whose indices are
appropriately chosen to mimic a realistic EOS and obtained results that reproduce the exact EOS
to hundredths of percent accuracy. The left panel of Fig. 7 shows our results for this test case.
Methods to yield even better accuracy using this modified Lindblom procedure are being devised.

An alternative procedure is to solve the reformulated TOV equations from the center to the
surface with the assumed form of the EOS using a Newton-Raphson schemeto obtain the known
mass and radius. The results from this approach is shown in the right panel of Fig. 7. This method
also yields results to hundredths of percent accuracy. We now have twomethods that yield similarly
accurate results.

Figure 7: Deconstructing a neutron star with a two-power polytropic EOS.

We are now in a position to test our two schemes using physically motivated modelEOS’s. As
examples of realistic EOS’s, we will begin with the EOS’s of Ref. [20] . These EOS’s allow for
variations in the uncertain high-density behavior of the nuclear symmetry energy and mimic trends
found in microscopic calculations of high-density matter. The EOS labeled PAL31 is characterized
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by the nuclear matter compression modulus ofK = 240 MeV and a symmetry energy function for
potential interactions:F(u) = u, whereu = n/n0 andn0 = 0.16 fm−3. Including contributions from
kinetic energy, the symmetry energy atn0 is 30 MeV. The results in Fig. 8 show the extent to which
the EOS is reconstructed for the case in which the masses and radii are assumed to be those that
result from the EOS of PAL31 [20]. The two iterative schemes describedabove yield results of
similar satisfactory accuracy.

Figure 8: Deconstructing a neutron star with a physically motivated nucleonic EOS.

Work is in progress to determine the extent to which “Deconstruction” worksaccurately for a
variety of EOS’s including those that permit extreme softening at high density. Several exercises
can be envisaged: (i) To what extent can one determine if only one mass and radius are very well
determined? (ii) What if several masses and radii are known, albeit with unsatisfactory error bars?
(iii) To what extent can we determine the EOS given the inherent error bars in measurements?.
Answers to these questions and many others will be published soon [15]. In addition to its inherent
worth, this investigation will aid astronomers to better plan and secure observations in the future.

6. Conclusions

It is clear that

1. the masses and radii of several (say 5 to 7) of individual neutron stars can pin down (through
deconstruction) the equation of state of neutron-star matter and shed light on the density
dependence of the symmetry energy, i.e., the poorly known isospin dependence of strong
interactions, and

2. precise laboratory experiments, particularly those involving neutron-rich nuclei, are sorely
needed to pin down the near-nuclear aspects of the symmetry energy whichdetermines the
masses, neutron skin thicknesses, collective excitations, etc., of nuclei.

It is also clear that continuing mutual interactions of astronomers, laboratory experimenters
and theorists in the fields of astrophysics and strong interaction physics are necessary to fulfill the
objective of understanding the physics of compact objects in which the ultimateenergy density of
observable cold-baryonic matter is realized [21].
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