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1. Scope of ThisTalk

In this talk, I will

1. summarize some theoretical advances made in establishing correlatioasetgervables
of nuclei and neutron stars,

2. indicate how laboratory experiments, e.g., at JLab and Rare Isotapepators (RIAS),
can help to unravel the composition and structure of a neutron star,

3. point out how the observed massbtq) and radii R's) of several individual neutron stars
can be used to construct the model independent equation of state (EQ&)se matter
(through an inversion process that | term as “Deconstructing a Ne8teot), and

4. indicate the key neutron star observations that are necessary toapgérleour understand-
ing of the nature of strong interactions at supra-nuclear densities.

2. ThePervasive Role of the Nuclear Symmetry Energy

The nuclear (a)symmetry energy

1 9%(n,x) __ M= 4 o (2.1)
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represents the energy cost required to create an isospin asyndriatnucleonic matter. Above,
Ny andnp are the neutron and proton densitiess the proton fraction in matter, aragn, d) is the
energy density of isospin asymmetric matter. Figure 1 from Ref. [1] shosveribrgy per particle
of bulk nuclear(x = 1/2) and neutron mattgix = 0) versus the total baryon density
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Figure 1: Results shown are for the microscopic potential model ¢aticuns of Akmal and Pandharipande
(APR) [2, 3] and simpler nonrelativistic and relativistifestive model fits (NRAPR and RAPR) [1].
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The physical properties of nuclei, such as their masses, neutron atwh glensity distribu-
tions (including their mean radii), collective excitations, fission propertietemand momentum
flows in high energy heavy-ion collisions, etc. all depend on the isospietate of the strong
interactions between nucleons (i.an and pp interactions versugp interactions). The energy
[l = pn — pp = 4Esmd, Wherep, and i, are the neutron and proton chemical potentials, respec-
tively, is crucial in determining reaction rates involving electrons and nesyiparticle abun-
dances, etc., in astrophysical contexts such as supernova dynarotosneutron star evolution,
ther—process, the long-term cooling of neutron stars, and the structurddstatalyzed neutron
stars (i.e. their masses, radii and crustal extent), etc. The pervakvef the isospin dependence
of strong interactions in nuclear processes in the laboratory and the sdssiatched in Fig. 2.
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Figure 2: The pervasive role of the nuclear symmetry energy. Figlkertédrom Ref. [1].

3. Connectionsto Neutron Star Structure

The structure of neutron stars is determined by the energy and presstrge-neutral beta-
stable matter, the nucleonic components of which can be written as

E(n,x) = E(n,0.5) + Egm(n) (1—2x)24---,
P(n,x) = n?[E'(n,0.5) + E§p (1—2)%] + -+, (3.1)
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where the primes above refer to derivatives with respect to densityohiegelectrons and muons)
contributions must be added to Eq. (3.1) for the total energy and peesdis demonstrated in
Ref. [4], the radius (but, not necessarily the mass) of a nucleonicarestiar is chiefly determined
by the pressure in the vicinity of the nuclear equilibrium densigyy 0.16+0.01 fm=3, for which
the contribution of the first term to the pressure in Eq. (3.1) is very small. f€hatsire of a neu-
tron star’s structure highlights the importance of the density dependerbe nticlear symmetry
energy neany. Figure 3 shows the mass-radius relationships for select EOS modelsincthd
cases in which extreme softening due to the presence of exotica suchestig; quarks or Bose
condensates occurs in the cores of stars.
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Figure 3: Mass versus radius curves from Ref. [5]. EOS symbols are Refin [4].

In Fig. 4, the observed neutron star masses are shown. The simpleand&ighted means
for neutron stars in x-ray binaries are 1.55,Mnd 1.37 M, respectively. The corresponding
numbers for double neutron star binaries are 1.32 &nd 1.41 M,, whereas for white dwarf -
neutron star binaries, the numbers are 1.60&nhd 1.33 M,. It is unfortunate that in those cases
(e.g., binary radio pulsars) in which the masses are very accuratelynkrtbes corresponding
numbers for radii are unknown. It is hoped that with improvements in timintysisathe moment
of inertia of the neutron star in the double-pulsar system J0737-3039egitihe available [6]. As
will be shown later, the masses and radii of several individual neutewa san uniquely pin down
the EOS of dense matter. For prospects of obtaining this much needed itifarnsae the article
by Bob Rutledge in these proceedings. For prognosis of EOS determirsgmRef. [7].
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Figure 4. Observed neutron star masses. Figure courtesy of Lattimer.

4. TheRoleof Isospin Interactionsin Nuclel and Neutron Stars

A few of the recently discovered empirical relationships that undergtereole of isospin
interactions in nuclei and neutron stars are highlighted here.

The neutron skin thicknessin nuclei and the sub-nuclear pressure of pure neutron matter

Typel and Brown [8, 9] have noted that model calculations of the diffezdbetween neutron
and proton rms radidR = (rﬁ)l/z - (r%>1/2 are linearly correlated with the pressure of pure neu-
tron matter at a density belomy characteristic of the mean density in the nuclear surface (e.g.,
0.1 fm~3). The density dependence of the symmetry energy controls the so-callgdmekin
thicknessdR in a heavy, neutron-rich nucleus. ExplicityR is proportional to a specific average
of [1— Egm(no)/Egm(n)] in the nuclear surface, see Refs. [10, 1].

The left panel of Fig. 5 shows the Typel-Brown correlation extendedetdron-star matter
in Ref. [1] using both potential and field-theoretical models. The prdddda 12] at JLab to
measure the neutron rms radius?8#Pb through parity-violating electron scattering experiments

to 1% accuracy (the rms charge radii of nuclei are known to better acgucan help to provide a
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Figure 5: Left panel: The neutron skin thickne8® of finite nuclei versus the pressure @fequilibrated
neutron star matter at a density ol@m 2. Right panel: Calculated neutron skin thicknesdBof nuclei
versus the radii of #M, stars. Trends for stars up to the maximum mass are similae sbhd lines
represents a least square fit. Trends for stars up to the raaximass are similar [1]. Figure taken from [1].

calibration pressure of neutron-star matter at sub-nuclear densitieknblvledge of neutron rms
radii for neutron-rich nuclei of varying masses will be of great helpstaklishing the uncertain
density dependence of isospin interactions at sub-nuclear densitesghhpanel of Fig. 5 shows
that the correlation betweedR and Ry 4 is not very sharp. Accurate predictions of neutron star
radii require knowledge of the equation of state at supra-nucleaitigsns

The neutron skin thicknessin nuclei and the neutron star radius

Horowitz and Piekarewicz [13] have pointed out that models that yield snmalgron skins in
heavy nuclei tend to yield smaller neutron star radii. These authors, alitimgtivers [14, 1], have
stressed the need for accurate measurements of the neutron skin tbéskoéguclei. Although
the neutron star radii are determined at supra-nuclear densities, theatitprovided at sub-
nuclear densities cannot be ignored. Even with varying stiffness atddghity, several works
have confirmed the trend shown in the right panel of Fig. 5. The Hordwikarewicz correlation
is thus very suggestive inasmuch as radii of stars up to the maximum masi sixhillar trends. It
would be fruitful to test this correlation from accurate radius measureroéntutron stars whose
corresponding masses are also well determined.

Theneutron star radius Rand the pressure P of neutron-star matter

Lattimer and Prakash [4] found that the quanBf~ /4 is approximately constant, for a given
neutron star mass, for a wide variety of EOS’s when the pre$3oifebeta-equilibrated neutron-
star matter is evaluated at a density in the ramgto 2ng, whereng denotes equilibrium nuclear
matter density. Since the pressure of nearly pure neutron matter (a go@Xiapation to neutron
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star matter) neanmg is approximately given bylegym (see Eq. (3.1)), the density dependence of
the symmetry energy just abowmg will be a critical factor in determining the neutron star radius.
Figure 6 shows results fordM,, stars. Similar trends persist for stars up to the maximum mass star
as shown in Ref. [4]. This correlation, coupled with accurate measutsrmé&neutron star radii,

can delimit the very uncertain (up to a factor of 5!) pressure of nelgtanmatter (see Ref. [4]) at
supra-nuclear densities.
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Figure 6: The quantityRP~? as a function of the stellar radiug for pressure® determined at 3/2, 2
and 3 times equilibrium nuclear matter density. For eaclsitierthe best-fit value for the exponemtis as
indicated. Circled stars indicate the results obtaineth wie APR equation of state. These results are for
1.4M,, stars; results for stars up to the maximum mass star aressirRiure taken from Ref. [1].

5. Deconstructing a Neutron Star

This section contains a report of on-going work of the speaker withegePgpstnikov and
James Lattimer [15]. The question being posed here is “Can observatithesmasses and radii
of several (say 5 to 7) individual stars uniquely determine the dense nEg8®?” In short, the
answer is a resounding YES! This assertion follows from the work ofthlim [16] who exploited
the one-to-one correspondence between an EOS aid thR curve generated through the use of
the Tolman-Oppenheimer-Volkov (TOV) [17, 18] equations of stellar stinec Given the diverse
theoretical predictions, it is of great interest to enquire whether or pgg¢rwations of masses and
radii of several neutron stars can be used to uniquely pin down thdéypamswn high density
EOS. The extent to which inherent errors in measurements affect trectuir of the EOS (not
addressed in Lindblom’s work) will become an important issue.

Recently launched campaigns [19] to accurately measure masses aruaf ealdifge number
of neutron stars give impetus to investigate this inversion procedure in reptk than originally
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undertaken by Lindblom. The extension of such an inversion procddunelude other observ-
ables such as the surface redshifts, binding energies, moments of iaetrtihas been undertaken
by Postnikov, Prakash and Lattimer incorporating the inherent errast/gw in observations.

We begin by recasting the TOV equations of stellar structure using the lahatefined
throughdh =dp/(p+ p(p)), wherep is the pressure angl(p) is the mass-energy density. Adopt-
ing the unitsG = 1 andc = 1, the result is

dr? , r—2m dm 3 —2m

dh ~ 7 myamdp dn = Pmram3p’ &

wherep(h) andp(h), which serve as input, contain the EOS. The advantages of this reformulatio
(somewhat different than that used by Lindblom) are that the encloseshmeaasl radius are now
dependent (om and thus the EQOS) variables, ahds finite both at the center and surface of the
star. Furthermore, the quantitie§h) andm(h) admit tractable Taylor expansions abdwtthat
feature the finite quatitieg;, p. and(dp/dh)¢, where the subscritdenotes the star’s center.

The procedure is to begin with a known EOS up to a certain density, take seraifriants in
mass and radius, and adopt an iterative scheme based on Eq. (5.19htaheaew known mass
and radius. In the absence of observational numbers for indivithral, s test of the above scheme
can be performed by assuming that the masses and radii are those thdtoesa model EOS.

We have tested our scheme using an EOS consisting of two polytropes wihlisesiare
appropriately chosen to mimic a realistic EOS and obtained results that reprtduexact EOS
to hundredths of percent accuracy. The left panel of Fig. 7 shawsesults for this test case.
Methods to yield even better accuracy using this modified Lindblom proeeaterbeing devised.

An alternative procedure is to solve the reformulated TOV equations frencehter to the
surface with the assumed form of the EOS using a Newton-Raphson stheini@in the known
mass and radius. The results from this approach is shown in the rightgédng. 7. This method
also yields results to hundredths of percent accuracy. We now havaethmds that yield similarly
accurate results.
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Figure 7: Deconstructing a neutron star with a two-power polytrop@3

We are now in a position to test our two schemes using physically motivated BO®$. As
examples of realistic EOS’s, we will begin with the EOS'’s of Ref. [20] . EhE®S'’s allow for
variations in the uncertain high-density behavior of the nuclear symmetrgyeard mimic trends
found in microscopic calculations of high-density matter. The EOS labele@PAd characterized
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by the nuclear matter compression modulugef 240 MeV and a symmetry energy function for
potential interactionsE (u) = u, whereu = n/ng andng = 0.16 fm~3. Including contributions from
kinetic energy, the symmetry energymgtis 30 MeV. The results in Fig. 8 show the extent to which
the EOS is reconstructed for the case in which the masses and radii aneeds® be those that
result from the EOS of PAL31 [20]. The two iterative schemes descréltede yield results of
similar satisfactory accuracy.
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Figure 8: Deconstructing a neutron star with a physically motivatadi@onic EOS.

Work is in progress to determine the extent to which “Deconstruction” wacksirately for a
variety of EOS'’s including those that permit extreme softening at high derdélyeral exercises
can be envisaged: (i) To what extent can one determine if only one mdsadias are very well
determined? (ii) What if several masses and radii are known, albeit withtigfactory error bars?
(iii) To what extent can we determine the EOS given the inherent err@ribaneasurements?.
Answers to these questions and many others will be published sooniildddition to its inherent
worth, this investigation will aid astronomers to better plan and secure @ltssry in the future.

6. Conclusions
It is clear that

1. the masses and radii of several (say 5 to 7) of individual neutrosicda pin down (through
deconstruction) the equation of state of neutron-star matter and shed tighe aensity
dependence of the symmetry energy, i.e., the poorly known isospin depmsnof strong
interactions, and

2. precise laboratory experiments, particularly those involving neutobnauclei, are sorely
needed to pin down the near-nuclear aspects of the symmetry energy detémines the
masses, neutron skin thicknesses, collective excitations, etc., of nuclei.

It is also clear that continuing mutual interactions of astronomers, labgraxmerimenters
and theorists in the fields of astrophysics and strong interaction physiceeessary to fulfill the
objective of understanding the physics of compact objects in which the ultenargy density of
observable cold-baryonic matter is realized [21].
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