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The knowledge on stellar weak interaction processes is one of the most important ingredients for
resolving astrophysical questions. Study of these rates is essentially a nuclear structure problem,
in which the actual decay rates are determined by the microscopic inside of nuclear many-body
systems. For many astrophysically-interested questions, information on detailed nuclear level
structure at low excitations is important. It has been suggested that the nuclear shell model, i.e. a
full diagonalization of an effective Hamiltonian in a chosen model space, is the most preferable
method for calculations of these rates. However, performing a shell-model calculation for heavy
nuclei is itself a long-standing problem in nuclear physics. This is particularly true for deformed
mass regions where the conventional shell-model method cannot be applied.
The Projected Shell Model (PSM) treats the problem in a different way. The PSM starts with a
deformed single-particle basis instead of the spherical one. The many-body configurations are
constructed by superimposing the angular-momentum-projected multi-quasiparticle states, and
nuclear wave functions are obtained by digonalizing the two-body interactions in these projected
states. Thus, it follows exactly the shell model philosophy and is a multi-major-shell shell model
defined in the deformed basis.
A method for calculation of Gamow-Teller transition rates is developed in the framework of the
PSM. With this method, it may become possible to perform a state-by-state calculation for β -
decay and electron-capture rates in heavy, deformed nuclei at finite temperatures. A prelimi-
nary example indicates that, while experimentally known Gamow-Teller transition rates from the
ground state of the parent nucleus are reproduced, stronger transitions from some low-lying ex-
cited states are predicted to occur, which may considerably enhance the total decay rates once
these nuclei are exposed to hot stellar environments. Possible applications of this method are
discussed.
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Except for a few nuclei lying in the vicinity of shell closures, most medium to heavy nuclei are
difficult to describe in a spherical shell model framework because of the unavoidable problem of
dimension explosion. Therefore, the study of nuclear structure in heavy nuclei has relied mainly on
mean-field approximations, in which the concept of spontaneous symmetry breaking is applied [1].
However, there has been an increasing number of compelling evidences indicating that the nuclear
many-body correlations are important. For many astrophysical problems, a nuclear shell model can
generate well-defined wave functions in the laboratory frame, allowing one to compute, without
further approximations as often assumed in the mean-field approaches, quantities such as transition
probabilities, spectroscopic factors, and β -decay and electron-capture rates. Results of shell model
calculations could strongly modify the expectation of nuclear astrophysics, as demonstrated in [2].

In the long history of shell-model development, tremendous effort has been devoted to extend-
ing the shell-model capacity from its traditional territory to heavier shells. Despite the progress
made in recent years, it is impossible to treat an arbitrarily large nuclear system in a spherical shell
model framework. One is thus compelled to seek judicious schemes to deal with large nuclear
systems. Since most nuclei in the nuclear chart are deformed, it is natural for a shell model calcu-
lation to use a deformed basis to incorporate the physics in large systems. That is the idea that the
Projected Shell Model (PSM) [3] is based on.

The PSM works with the following scheme. It begins with the deformed Nilsson single particle
basis, with pairing correlations incorporated into the basis by a BCS calculation. The Nilsson-BCS
calculation defines a deformed quasiparticle (qp) basis. Then angular-momentum projection is
performed on the qp basis to form a shell model space in the laboratory frame. Finally a two-body
Hamiltonian is diagonalized in this projected space. The PSM uses an energy-dictated shell-model
truncation. It has a large single-particle space, which ensures that the collective motion and the
cross-shell interplay are defined microscopically. It usually includes three (four) major harmonic-
oscillator shells each for neutrons and protons in a calculation for deformed (superdeformed or
superheavy) nuclei.

If |Φ〉 is the qp vacuum and a†
ν and a†

π the qp creation operators, with the index ν (π) de-
noting the neutron (proton) quantum numbers and running over selected single-qp states for each
configuration, the multi-qp configurations are given for even-even and odd-odd nuclei as follows:

e-e: {|Φ〉 ,a†
νia

†
ν j |Φ〉 ,a†

πia
†
π j |Φ〉 ,a†

νia
†
ν j a

†
πk a

†
πl |Φ〉 , · · ·},

o-o: {a†
νia

†
π j |Φ〉 ,a†

νia
†
ν j a

†
νk a

†
πl |Φ〉 ,a†

νia
†
π j a

†
πk a

†
πl |Φ〉 ,a†

νia
†
ν j a

†
νk a

†
πl a

†
πma†

πn |Φ〉 , · · ·}.
(1)

The indices ν and π in (1) are general; for example, a 2-qp state can be of positive parity if both
quasiparticles i and j are from major N-shells that differ by ∆N = 0,2, . . ., or of negative parity if i
and j are from N-shells differing by ∆N = 1,3, . . .. The PSM wave-function can be written as

|Ψσ
IM〉= ∑

Kκ
f σ
IKκ P̂I

MK |Φκ〉 , with P̂I
MK =

2I +1
8π2

∫
dΩDI

MK(Ω)R̂(Ω), (2)

where |Φκ〉 denotes the qp-basis given in (1), and P̂I
MK is the angular momentum projection operator

[1]. The energies and wave functions (given in terms of the coefficients f σ
IKκ

in Eq. (2)) are obtained
by solving the following eigen-value equation:

∑
K′κ ′

(HI
Kκ,K′κ ′−Eσ

I NI
Kκ,K′κ ′) f σ

IKκ ′ = 0 (3)
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Figure 1: (Color online) Calculated moments of inertia J (I) = (2I−1)/[E(I)−E(I−2)] for neutron-rich
Fe isotopes, compared with available data.

where HI
Kκ,K′κ ′ and NI

Kκ,K′κ ′ are respectively the matrix elements of the Hamiltonian and the norm.
The Hamiltonian in the present study consists of following separable forces

Ĥ = Ĥ0 + ĤQP + ĤGT , (4)

which represent different kinds of characteristic correlations between valence particles. The single-
particle term Ĥ0 contains a set of properly adjusted single-particle energies in the Nilsson scheme
[4]. The second force, ĤQP, is of the quadrupole+pairing type, and contains three terms [3]

ĤQP =−1
2

χQQ ∑
µ

Q̂†
2µQ̂2µ −GMP̂†P̂−GQ ∑

µ
P̂†

2µ P̂2µ . (5)

The strength of the quadrupole-quadrupole force χQQ is determined in a self-consistent manner that
it would give the empirical deformation as predicted in mean-field calculations [3]. The monopole-
pairing strength is taken to be the form GM = [G1∓G2(N−Z)/A]/A, where “+" (“−") is for
protons (neutrons), and G1 and G2 are the coupling constants adjusted to yield the known odd-even
mass differences. The quadrupole-pairing strength GQ is taken to be about 20% of GM, as is often
assumed in the PSM calculations [3]. The last force, ĤGT in Eq. (4), is the Gamow-Teller (GT)
force

ĤGT = 2χGT ∑
µ

β̂−1µ(−1)µ β̂+
1−µ − 2κGT ∑

µ
Γ̂−1µ(−1)µ Γ̂+

1−µ . (6)

This is a charge-dependent interaction with both particle-hole (ph) and particle-particle (pp) chan-
nels, which act between protons and neutrons. This type of force was used by several authors [5, 6]
in the study of single- and double-β decay. The pp interaction, which was introduced by Kuz’min
and Soloviev [5], is a neutron-proton pairing force in the Jπ = 1+ channel, with the interaction
strengths χGT = 23/A and κGT = 7.5/A from Ref. [5]. It should be mentioned that the Hamilto-
nian in Eq. (4) may need to be extended when specific quantities or transition processes are studied.
For example, the spin-dipole force would be necessary to reproduce first-forbidden transitions.
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Figure 2: (Color online) (Left panel) Possible transition paths from the ground band of 164Ho to that of
164Dy. Experimentally known energies for these states are also displayed. (Middle panel) Calculated B(GT)
and (right panel) log f t values for the 164Ho → 164Dy electron-capture process. Available log f t data are
shown by stars, which are taken from Ref. [7]. These figures are reproduced from Ref. [8].

As an example, calculations for some neutron-rich Fe isotopes are shown in Fig. 1. Overall,
the PSM results reproduce the data well. It has been known that around 66Fe with the neutron
sub-shell 40, the isotopes are well deformed with the neutron g9/2 orbital lying close to the Fermi
level. For such nuclei, it is thus the best applicable place for the PSM.

Within the framework of the PSM, a computer code for GT rates has recently been developed
and tested [8]. Here, we present a preliminary example published in [8]. In the left panel of Fig.
2, possible allowed GT transitions from the ground band of 164Ho to that of 164Dy are illustrated.
Here, energy levels up to about 800 keV of excitation in both parent and daughter nuclei are con-
sidered. They are ∆I = Ip− Id = +1 transitions (in black), ∆I = 0 transitions (in red), and ∆I =−1
transitions (in green). The calculated B(GT) values are shown in the middle panel, and the cor-
responding log f t values in the right panel. The experimentally measured decay probabilities are
those of the Ip = 1 → Id = 0 and Ip = 1 → Id = 2 transitions, with which our calculation agrees
well. The other transition probabilities associated with the excited states are our prediction. It is
very interesting to note that the decay rates with ∆I = 0 (in red) are predicted to have larger B(GT)
and smaller log f t values than the measured ∆I =±1 transitions. Such rates should be included as
part of the total rate when these states are thermally populated in hot stellar environments.

We mention a few attractive features in our approach for studying weak interactions rates,
which may be relevant for future astrophysical applications.

(1) The PSM utilizes single particle bases generated by deformed mean-field models yet car-
ries out a shell-model diagonalization like the conventional shell model. Conceptually, the PSM
bridges two important nuclear structure methods: the deformed mean-field approach and the con-
ventional shell model, and takes the advantages of both. As a shell model, the PSM can be applied
to any heavy, deformed nuclei without a size limitation. The PSM wave functions contain correla-
tions beyond mean-field and the states are written in the laboratory frame having definite quantum
numbers such as angular-momentum and parity. These are needed properties when the wave func-
tions are employed in transition calculations.
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(2) Because of the way the PSM constructs its basis, the dimension of the model space is small
(usually in the range of 102−104). With this size of basis, a state-by-state evaluation of GT tran-
sition rates is computationally feasible. This feature is important because in stellar environments
with finite temperatures, the usual situation is that the thermal population of excited states in a
parent nucleus sets up connections to many states in a daughter by the GT operator [9].

(3) The calculation of forbidden transitions involves nuclear transitions between different har-
monic oscillator shells and thus requires multi-shell model spaces. Such a calculation is not feasible
for most of the conventional shell models working in one-major shell bases. The PSM is a multi-
shell shell model. This feature is desired particularly when forbidden transitions are dominated.

(4) Isomeric states belong to a special group of nuclear states because of their long half-
lives. The existence of isomeric states in nuclei could alter significantly the elemental abundances
produced in nucleosynthesis. There are cases in which an isomer of sufficiently long lifetime can
change the paths of reactions taking place and lead to a different set of elemental abundances [10].
The PSM is capable of describing the detailed structure of isomeric states.

In conclusion, the method described in the present paper can be applied to various fields such
as nuclear astrophysics and fundamental physics, where weak interaction processes take place in
nuclear systems. In particular, one may find interesting applications to cases where a laboratory
measurement for certain weak interaction rates is difficult and where the conventional shell model
calculations are not feasible. Potential applications in nuclear astrophysics are calculations of β -
decay rates for the r-process [11] and the rp-process [12] nucleosynthesis, and electron-capture
rates for the core collapse supernova modelling [13]. In the double-β decay theory, theoretical cal-
culations for the nuclear matrix elements are needed, for which one has relied on the Quasiparticle
Random Phase Approximation [6], particularly when heavy nuclei are involved. We expect that
the method presented here can make important contributions to all these studies.

References

[1] P. Ring and P. Schuck, The Nuclear Many Body Problem, Springer-Verlag, New York 1980.

[2] K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 75, (2003) 819.

[3] K. Hara and Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637.

[4] S. G. Nilsson et al., Nucl. Phys. A 131 (1969) 1.

[5] V. A. Kuz’min and V. G. Soloviev, Nucl. Phys. A 486 (1988) 118.

[6] J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998) 123.

[7] B. Singh, Nucl. Data Sheets 93 (2001) 243.

[8] Z.-C. Gao, Y. Sun, and Y.-S. Chen, Phys. Rev. C 74 (2006) 054303.

[9] F. Käppeler, this proceeding.

[10] A. Aprahamian and Y. Sun, Nature Phys. 1 (2005) 81.

[11] B. Pfeiffer, K.-L. Kratz, F.-K. Thielemann, and W. B. Walters, Nucl. Phys. A 693 (2001) 282.

[12] H. Schatz et al., Phys. Rep. 294 (1998) 167.

[13] W. R. Hix, this proceeding.

5


