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We measure half-lives of the ground state of184Re and an isomer in164Ho, which are populated

by (γ,n) reactions with laser Compton scattering (LCS)γ-ray source at NewSUBARU. These

neutron-deficient isotopes are located on nucleosynthesis flows of the supernovaγ process. The

measured half-life of 35.4± 0.3 d for184Re is shorter than the previous half-life ofT1/2 = 38.0

± 0.5 by about 7%. The half-life of the164Ho isomer is 36.4± 0.3 min. This is about 3%

shorter than a recommended valueT1/2 = 37.5+1.5
−0.5 min. These results indicate that half-lives of

all unstable nuclei near theβ stability line may be not robust and that the LCSγ-rays are useful

for precise determination of the half-lives.
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1. Introduction

The (γ,n) reactions on neutron-deficient isotopes are important for understanding nucleosyn-
thesis by photodisintegration reactions in supernova explosions (γ process orp process) [1–7]. For
this reason, the (γ,n) reaction cross-sections were measured in the rare-earth region [8–10]. An ac-
tivation method has been used for measurements of nuclear reaction cross sections in these studies
[8,9,11]. The half-lifeT1/2 of the populated nucleus is crucial for the activation method since the
evaluated cross-section is proportional toT1/2 of the populated nucleus.

The progress of the relativistic engineering (for example see Ref. [12]) provides a newγ-ray
source with a MeV energy range. Theseγ-rays are generated by Compton scattering of relativistic
electrons by laser photons. These laser Compton scatteringγ-rays (LCSγ-rays) have advantages
that the maximum energy is sharply determined and that theγ-ray flux with high energy is rela-
tively high. The Duke Free Electron Laser Laboratory at Duke University [14] and the National
Institute of Advanced Industrial Science and Technology [13] have provided the LCSγ-rays in
the MeV energy range and they have been widely used for applications with photon-induced reac-
tions. Recently, a new LCSγ-ray source was installed at an electron storage ring NewSUBARU
in SPring-8[15,16]. We measure half-lives of184Re[17] and164Ho isomer[18] populated by photo-
disintegration reactions with the LCSγ-rays at NewSUBARU.

2. Laser Compton scatteringγ-ray source at NewSUBARU

A Q-switch Nd:YVO4 laser system and a nuclear experiment room with a heavy shield locate
at the outside of the electron storage ring NewSUBARU as shown in Fig. 1. The collision of the
relativistic electrons and the laser photons creates a high energyγ-ray, whose energy depends on
an angle between the direction of the incident electrons and the generatedγ-rays. The energy
distribution of the LCSγ-rays is determined in the basic QED process. The diameter of the LCS
γ-rays is about 20 mm without a collimator at the target position, which is located at about 20
m from the collision point. The electron storage ring NewSUBARU can store electrons with an
energy of 978 MeV up to 230 mA in a top-up mode. The 198 electron bunches circulate in the
storage ring with a frequency of 2.5 MHz. An interval time of the electron bunches is about 2 ns.
The Nd:YVO4 laser system provide laser photons with a wavelength of 1064 nm at 100 kHz. A
single laser pulse with a pulse length of 10 ns has a chance to collide with four or five electron
bunches in the collision region. The laser power is typically 4 W and the estimatedγ-ray flux is
0.5−1.5× 106 photons/s with an energy range from 3.3 MeV to 16.7 MeV. This maximum energy
of the LCSγ-rays is higher than the peak energy of the giant dipole resonance (GDR), and thus
neutron-deficient isotope is effectively populated by the GDR excitation.

3. Measurements of half-lives of164Ho isomer and184Re

In an experiment of Re, we used three natural Re metallic foils. The individual Re foil had a
thickness of 0.2 mm and a size of 25 mm× 25mm. The three stacked natural Re metallic foils were
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Figure 1: The laser Compton scatteringγ-ray source at NewSUBARU
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Figure 2: Nuclear reactions and decay scheme of184Re (left) and164Ho isomer (right).

irradiated by the LCSγ-rays for about 9 hours. The irradiated targets were cooled for a period of
23 days to reduce the background from short-lived radioactivities such as186Re (T1/2=90.64 h) and
to obtain the stability of the electronics system. To evaluate the half-life of184Re, time dependence
of γ-ray intensities from the activities was measured for a period of 83 days. Theγ-rays emitted
after theβ decay were measured by a HPGe detector with lead shields. The three Re foils were
located on a plain in the front of the HPGe detector. The efficiency of the HPGe detector was larger
than 70% relative to a 3"× 3" NaI detector and its energy resolution was 2.1 keV at 1.3 MeV.
The measurement system was almost stable and the peaks of theγ-rays shifted by only one or two
channel/s relative to about 3000 channels during the measurement of 83 days.

In an experiment of Ho, twenty stacked metallic Ho foils were irradiated by the LCSγ-rays
for 41 min and subsequently the targets were moved to a measurement position. The size of each
Ho foil was 10 mm× 10 mm× 1 mm. After 8 min from the LCSγ-ray irradiation, decayγ-rays
from the foils were measured by a HPGe detector for 110 min. The twenty Ho targets were located
on a plain in the front of the HPGe detector with lead shields. The efficiency of the HPGe detector
was about 45%.

Threeγ-rays of 792.1, 894.8 and 903.3 keV of184Re are clearly observed. The half-life was
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Figure 3: Measured decay curves ofγ-rays of184Re (left) and164Ho isomer (right).

evaluated from the decay curves of these threeγ-rays. Since theγ-rays following the decay of
the isomer on184Re were not observed the ground state of184Re is dominantly populated in this
reaction. The decay curves are well fitted by a straight line as shown in Fig. 3. The individual
spectrum is recorded for a period of three days. We obtain the half-life of the individualγ-ray
by usingχ-square fitting and the results are 35.1± 0.5, 36.0± 0.9 and 35.6± 0.5 d for 792.1,
894.8 and 903.3 keVγ-rays, respectively. These three half-lives are identical within the uncertainty.
Finally we obtain the half-life of 35.4± 0.3 d as the average value of these threeγ-rays.

Historically, the measurement of the half-life, 38± 1 d, was reported in 1960 [19]. The
most precise half-life, 38.0± 0.5 d, was reported in 1962 [20] and this was widely taken as the
recommended value. In these two studies, Re activities were prepared by using deuteron-induced
reactions. After these studies, the isomer with a half-life of 169 d was found by a measurement
of decay of activities populated by the neutron-induced reactions in a nuclear reactor. Therefore
radioactive samples in the two historical studies [19,20] may include the isomer, but the effect of
the isomer was not taken into account.

We obtain the decay curves of the 37.3-keVγ-ray and 54-keV Kβ X rays of Ho as shown in
Fig. 3. The half-lives obtained byχ square fitting are 36.1± 0.4 min and 36.6± 0.4 min for 37
keV γ ray and 54 keV X ray, respectively. We take the average value of 36.4± 0.3 min as the
half-life of the164Ho isomer in the present experiment. This half-life is about 3% shorter than the
previous value of 37.5+1.5

−0.5 min, which was measured by a NaI(Tl) detector in 1966 [22]. Note that
the decay curves of 91.4 keV and 73.4 keV from the decay of164Ho must be composed of feeding
from the164Ho isomer andβ -decay.

4. Conclusion

We report half-lives of the184Re ground state and164Ho isomer, which are populated via
photodisintegration reactions with laser Compton scattering (LCS)γ-rays at electron storage ring
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NewSUBARU. The ground state of184Re is dominantly populated in this reaction. The measured
half-life is 35.4± 0.3 d. This is about 7% shorter than a recommended valueT1/2 = 38.0±
0.5, which was reported in 1962 before a discovery of an isomer withJπ = 8+ in 184Re. Our
result provides essential information for applications using an activation method because the cross-
section should be smaller by about 7% than that based on the previous value. The measured half-life
of the164Ho isomer is 36.4± 0.3 min. This is about 3% shorter than a recommended valueT1/2 =
37.5+1.5

−0.5 min, which was measured by a NaI(Tl) detector in 1966. These experiments indicate that
measured half-lives of all unstable nuclei near theβ stability line may be not robust and that the
LCS γ rays are useful for a precise measurement even if a high spin isomer exists in a nucleus of
interest.
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