

Studying Matrix Elements for the Neutrinoless Double Beta Decay of ¹⁵⁰Nd via the

 150 Sm(t, 3 He) 150 Pm* and 150 Nd(3 He,t) 150 Pm* Reactions

C.J. Guess 1,2,3* , Sam M. Austin 1,3 , D. Bazin 1 , B.A. Brown 1,2,3 , C. Caesar 1,4 , J.M. Deaven 1,2,3 , C. Herlitzius 1,4 , G.W. Hitt 1,2,3 , R.T. Meharchand 1,2,3 , G. Perdikakis 1,3 , Y. Shimbara 5 , C. Tur 1,3 , R.G.T. Zegers 1,2,3

Group webpage: http://groups.nscl.msu.edu/charge_exchange/

The existence of neutrinoless double beta decay would prove that neutrinos have a Majorana nature and that lepton number is not conserved. To extract information about the neutrino mass scale and hierarchy from $0\nu\beta\beta$ decay experimental data, accurate nuclear matrix elements are needed. Such information is also crucial for the design of experiments aimed at detecting neutrinoless double beta decay. Nuclear charge-exchange experiments play an important role in constraining the theories used to predict these matrix elements by providing Gamow-Teller strengths and higher order multipole transition strengths. The charge-exchange group at the NSCL focuses on the measurements of $^{150}\text{Sm}(t,^3\text{He})^{150}\text{Pm}^*$ and $^{150}\text{Nd}(^3\text{He,t})^{150}\text{Pm}^*$ reactions, which are of relevance for the double beta decay of ^{150}Nd . The details for the $^{150}\text{Sm}(t,^3\text{He})^{150}\text{Pm}^*$ experiment and the upcoming $^{150}\text{Nd}(^3\text{He,t})^{150}\text{Pm}^*$ experiment are discussed.

10th Symposium on Nuclei in the Cosmos July 27 - August 1 2008 Mackinac Island, Michigan, USA

¹National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA

²Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

³ Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA

⁴Johannes Gutenberg Universität, Mainz, Germany

⁵Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan E-mail: guess@nscl.msu.edu

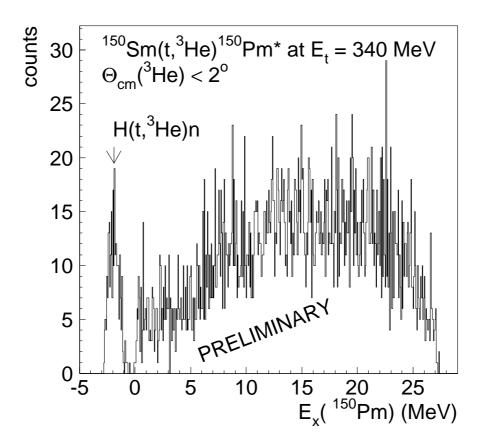
^{*}Speaker.

 $^{^{\}dagger}$ We thank staff at NSCL for their support during the 150 Sm experiment. This work was supported by the US NSF (PHY0216783 (JINA), PHY-0555366, PHY-0606007)

1. Motivation

Double beta decay is a rare process that may occur in the absence of other allowed decay modes. Two-neutrino double beta decay [1] $(2\nu\beta\beta)$ has been detected for a number of different isotopes. Zero-neutrino double beta decay [2] $(0\nu\beta\beta)$ is not allowed in the standard model of particle physics. However, its existence is a matter of great interest, since a positive detection would prove neutrinos to be Majorana particles, break total lepton number conservation, and provide insights into CP conservation [3]. Numerous experiments with a variety of isotopes are planned or ongoing worldwide to search for $0\nu\beta\beta$ decay and to check the report of a positive signal by Klapdor-Kleingrothaus et al [4]. However, a measured half-life must be supplemented with other factors to successfully constrain the neutrino mass scale and hierarchy. There are 41 $\beta\beta$ isotopes [5] and only a handful of half-life measurements by geochemical, radiochemical, or direct methods have been made.

The decay rate for $0\nu\beta\beta$ decay is


$$[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G^{0\nu}(E_0, Z)|M_{GT}^{0\nu} + M_T^{0\nu} - \frac{g_V^2}{g_A^2}M_F^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2, \tag{1.1}$$

where $G^{0\nu}(E_0,Z)$ is a phase-space factor, $\langle m_{\beta\beta} \rangle$ is the effective neutrino mass, and $M_{GT}^{0\nu}$, $M_T^{0\nu}$, and $M_F^{0\nu}$ are the Gamow-Teller, tensor and Fermi matrix elements [6]. $G^{0\nu}$ can be calculated and is proportional to powers of the Q value of the decay and the proton number of the mother nucleus $(G \propto Q^5 Z^2)$. The nuclear matrix elements must be known to about 20% in order to provide useful information on $\langle m_{\beta\beta} \rangle$. In the $2\nu\beta\beta$ case the transition only proceeds through $J^{\pi}=1^+$ states of the intermediate nucleus. However, $0\nu\beta\beta$ decay can proceed through intermediate states with varying J^{π} , which greatly complicates calculation of the matrix elements. Experimental efforts to populate the intermediate nuclei for $0\nu\beta\beta$ transitions are necessary to test theoretical calculations and reduce the error in the matrix elements.

2. Charge-exchange and $\beta\beta$ decay

Nuclear charge-exchange reactions are a valuable tool to extract the Gamow-Teller, Fermi, and higher isovector multipole strengths in energy ranges inaccessible to β -decay experiments. They probe the spin-isospin response of nuclei by exchanging a proton (neutron) in the projectile with a neutron (proton) in the target nucleus. At intermediate energies (E \gtrsim 100 MeV/A) and vanishing momentum transfer (q = 0), the differential cross section for Gamow-Teller transitions is proportional to the Gamow-Teller strength: $\frac{d\sigma}{d\Omega}(q=0)=\hat{\sigma}B(GT)$ [7, 8]. Since the unit cross section can be calibrated using transitions of known Gamow-Teller strength from β -decay, Gamow-Teller strengths can be extracted from charge-exchange data in a model-independent way. The empirical strength distribution then can be used to test theoretical calculations employed for $0\nu\beta\beta$ and $2\nu\beta\beta$ decay [9, 10].

A large variety of charge-exchange probes are available, such as (p,n), (n,p), (d,²He), (³He,t), (t,³He), and (⁷Li,⁷Be). This work focuses on the use of the (³He,t) and (t,³He) reactions to study charge-exchange on ¹⁵⁰Nd and ¹⁵⁰Sm respectively. The two reactions are similar: they both give

Figure 1: Preliminary excitation energy for the 150 Sm(t, 3 He) 150 Pm* experiment is shown for an angular range of 0-2°. The full experiment covered angles up to 5°. Contamination from hydrogen in the target (peak below 0 MeV) has not yet been removed. In the future, multipole strengths for Δ L=0, Δ L=1, and Δ L=2 will be extracted and the resulting Gamow-Teller strength compared with theoretical calculations.

good resolution (\sim 30 keV for (3 He,t) and 200-300 keV for (3 He)) and allow for the determination of absolute cross sections. Recent charge-exchange papers that cite double beta decay as a primary motivation have looked at the nuclei 48 Ca [11], 64 Zn [12], 76 Ge, and 96 Zr [13]. Other such experiments are in progress.

3. The case for 150 Nd

 150 Nd has a large Q value for $\beta\beta$ decay and a high proton number, which results in a large value for the phase-space factor G. As a result, it is an attractive candidate for $\beta\beta$ studies. However, it is also deformed. Deformation is expected to decrease the nuclear matrix element [14, 15], but the extent of the reduction is not well known. Other $\beta\beta$ decay candidates (including 76 Ge) exhibit some degree of deformation, so insight from experimentation and calculation on 150 Nd is also useful for the other candidates. Out of the 10-15 proposed $\beta\beta$ decay experiments [16], two (DCBA [17] and SNO++ [18]) use 150 Nd as their primary isotopes. MOON [19] has the

potential to use 150 Nd as well. However, very little is known about 150 Pm, the intermediate isotope between 150 Nd and its $\beta\beta$ daughter 150 Sm, and information on the nuclear structure of 150 Pm is necessary to estimate $\beta\beta$ half-lives. To this end, two charge-exchange experiments were proposed and accepted: 150 Sm(t, 3 He) 150 Pm* at the National Superconducting Cyclotron Laboratory (NSCL) and 150 Nd(3 He,t) 150 Pm* at the Research Center for Nuclear Physics (RCNP).

4. Experimental setup and status

The 150 Sm(t, 3 He) 150 Pm* experiment ran in February of 2008. A 115 MeV/u secondary triton beam [20] impinged upon a 2.5-by-7.5 cm, 18 mg/cm² target of 150 Sm. The 3 He ejectile was detected in the focal plane of the S800 spectrometer [21, 22]. The S800 beamline is operated in dispersion-matched mode to achieve high resolution. A raytracing procedure [23] was used to reconstruct the scattering angles and momenta of the 3 He particles at the target from the measured angles and positions in the focal plane detectors of the S800. A missing mass calculation was done to find the excitation energy of 150 Pm. Figure 1 shows a preliminary excitation energy spectrum for six hours of 150 Sm(t, 3 He) 150 Pm* data. Analysis is ongoing. The 150 Nd(3 He,t) 150 Pm* experiment is scheduled for December of 2008. It will use the high-resolution Grand Raiden spectrometer and its accompanying beam line [24]. The resulting Gamow-Teller and higher multipole strengths from the two experiments will be used to constrain theoretical calculations for the $0\nu\beta\beta$ matrix elements for the decay of 150 Nd in collaboration with theory groups.

References

- [1] M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935)
- [2] W.H. Furry, Phys. Rev. 56, 1184 (1939)
- [3] R.N. Mohapatra et al., Rep. Prog. Phys. **70**, 1757 (2007)
- [4] H.V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Meth. Phys. Res. A 522, 371 (2004)
- [5] C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, New York, 2007
- [6] K. Zuber, Contemp. Phys. 45, no.6, 491 (2004)
- [7] T. D. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)
- [8] R. G. T. Zegers et al., Phys. Rev. Lett. 99, 202501 (2007)
- [9] H. Akimune *et al.*, Phys. Lett. B **394**, 23 (1997)
- [10] H. Sakai, Future Prospects for Spectroscopy and Direct Reactions, http://meetings.nscl.msu.edu/fp2008/presentations/sakai_2a.pdf, 2008
- [11] S. Rakers, Phys. Rev. C 70, 054302 (2004)
- [12] E.-W. Grewe et al., Phys. Rev. C 77, 064303 (2008)
- [13] E.-W. Grewe and D. Frekers, Prog. Part. Nucl. Phys. 57, 260 (2006)
- [14] S. Singh et al., Eur. Phys. J. A 33, 375 (2007)
- [15] P. Sarriguren et al., Int. J. of Mod. Phys. E 15, no. 7, 1397 (2006)

- [16] F. T. Avignone et al., Rev. Mod. Phys. **80**, 481 (2008)
- [17] N. Ishihara, T. Ohama, and Y. Yamada, Nucl. Instrum. Meth. Phys. Res. A 373, no 3, 325 (1996)
- [18] K. Zuber, Workshop on Calculation of Double Beta Decay Matrix Elements (MEDEX'07), AIP Conf. Proc **942**, 101 (2007)
- [19] M. Nomachi et al., Nucl. Phys. B. Proc. Supp. 138, 221 (2005)
- [20] G.W. Hitt, Nucl. Instrum. Methods Phys. Res. A 566, 264 (2006)
- [21] D. Bazin and J. A. Caggiano and B. M. Sherrill and J. Yurkon and A. Zeller, Nucl. Instr. Meth. Phys. Res. B **294**, 629 (2003)
- [22] J. Yurkon and D. Bazin and W. Benenson and D. J. Morrissey and B. M. Sherrill and D. Swan and R. Swanson, Nucl. Instr. Meth. Phys. Res. A **422**, 291 (1999)
- [23] K. Makino and M. Berz, Nucl. Instrum. Meth. Phys. Res. A 427, 338 (1999)
- [24] H. Fujita et al., Nucl. Instrum. Methods Phys. Res. A 484, 17 (2002)