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An equation of state (EOS) for uniform nuclear matter is constructed at zero and finite 
temperatures with the variational method starting from the realistic nuclear Hamiltonian 
composed of the AV18 two-body potential and the UIX three-body potential.  The maximum 
mass of the cold neutron star with this EOS is 2.2 M☉.  Making use of uncertainty of the three-
body nuclear force, adjustable parameters in the EOS are tuned so that the Thomas-Fermi 
calculations for β-stable nuclei reproduce the empirical data.  The obtained EOS is appropriate 
for constructing a new nuclear EOS table for supernova simulations.   
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1. Introduction 

Recently the importance of the nuclear equation of state (EOS) is increasing in the study 
of supernova (SN) explosions and related astrophysical phenomena.  At present, however, 
there are only few nuclear EOS’s available for SN simulations.  One is constructed by Lattimer 
and Swesty[1], and another is by Shen et al.[2]; the latter is extended recently to take into 
account hyperon mixing[3] and hadron-quark phase transition[4]. Since these EOS’s are based 
on phenomenological methods, nuclear EOS’s constructed with microscopic many-body 
theories starting from the realistic nuclear Hamiltonian are desirable.   

In this study, we undertake to construct the nuclear EOS for SN simulations with the 
variational method.  First, we construct the EOS for uniform nuclear matter at zero and finite 
temperatures[5].  Then, we apply the obtained EOS to the Thomas-Fermi calculation of atomic 
nuclei, and tune parameters in the EOS so as to reproduce the empirical data of β-stable nuclei.   

2. Uniform matter at zero and finite temperatures 

In this section, we calculate the energy for uniform nuclear matter at zero and finite 
temperatures.  The nuclear Hamiltonian H is decomposed into two parts: the two-body 
Hamiltonian H2 including the isoscalar part of the AV18 two-body potential, and the three-body 
Hamiltonian H3 composed of the UIX three-body potential.   

At zero temperature, the expectation value of H2 per nucleon with the Jastrow-type wave 
function, <H2>/N, is evaluated in the two-body cluster (TBC) approximation, and denoted by 
E2/N.  Then, E2/N is minimized with respect to various correlation functions in the Jastrow-type 
wave function.  In the minimization, two constraints are imposed: the extended Mayer’s 
condition and the healing-distance condition.  The latter includes an adjustable parameter, the 
value of which is chosen so that E2/N is close to the result obtained with the Fermi Hypernetted 
Chain method by Akmal, Pandharipande and Ravenhall (APR)[6].   

The contribution from the three-body force (TBF) is expressed in the form 
 

E3

N
= α

H3
R

F

N
+ β

H3
2π

F

N
+ γρ2e−δρ .                      (1) 

 
Here, H3

R and H3
2π are the repulsive and two-π-exchange parts of H3, respectively.  In Eq. (1), 

the brackets with the subscript F represent the expectation values with the Fermi-gas wave 
function, and ρ is the nucleon number density.  The adjustable parameters, α, β, γ and δ, are 
determined so that the total energy E/N = E2/N + E3/N reproduces the empirical saturation 
density ρ0 = 0.16 fm−3, saturation energy E0/N = −15.8 MeV, incompressibility K = 250 MeV 
and symmetry energy Esym/N = 30 MeV.  It is noted that α and β are common to symmetric 
nuclear matter and neutron matter, while γ = 0 for neutron matter. The obtained E/N for 
symmetric nuclear matter and neutron matter are in fair agreement with those by APR.   

At finite temperatures, the free energy for uniform nuclear matter is calculated with the 
variational method proposed by Schmidt and Pandharipande [7].  In this method, the free 
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FIGURE 1.  Free energies per nucleon for symmetric nuclear matter and neutron matter. The free 
energies obtained by FP are also shown.   

 
energy per nucleon F/N at temperature T is given by F/N = ET/N − T S/N.  The approximate 
internal energy ET/N is the sum of E2T/N and E3/N, in which E2T/N is the TBC approximation of 
<H2>/N with the Jastrow-type wave function at finite temperature, while E3/N is the TBF 
contribution and assumed to be the same as at zero temperature.  Here, the Jastrow-type wave 
function at finite temperature is specified by the averaged quasi-particle occupation probability 
n(k), which includes the effective mass of the quasi-nucleon m*.  The approximate entropy S 
can also be written in terms of n(k) as in the case of the Fermi gas.  Then, the total free energy 
F/N is minimized with respect to m*.   

In Fig. 1, the obtained energies at zero and finite temperatures are compared with the 
results by Friedman and Pandharipande (FP)[8].  At high densities, the present result is higher 
than that by FP, which implies that the obtained EOS is stiffer than that by FP.  The maximum 
mass of the cold neutron star obtained with the present EOS is 2.2 M☉ (See Fig. 3), and the 
critical temperature is about 18 MeV.   

3. Thomas-Fermi calculation of β-stable nuclei 

We are planning to calculate the EOS for nonuniform SN matter at low densities in the 
Thomas-Fermi (TF) approximation.  As a preparation for these calculations, we treat atomic 
nuclei in the TF calculation, and tune the parameters in the EOS so as to reproduce the 
empirical data of β-stable nuclei.   

In the simplified TF approximation used by Oyamatsu,[9] the binding energy B(N, Z) of a 
nucleus with the proton number Z and the neutron number N is given by 

 

−B(N,Z) = drε(ρn (r),ρp(r))∫ + F0 dr ∇ρ(r) 2∫ +
e2

2
dr d ′ r 

ρp(r)ρp( ′ r )
r − ′ r ∫∫ .  (2) 

 
The first term on the right-hand side of Eq. (2) is the bulk energy, where the energy density of 
uniform nuclear matter ε(ρn, ρp) for the neutron number density ρn and the proton number 
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density ρp is obtained from E/N calculated in Section 2.  The second term represents the 
gradient energy with ρ = ρp + ρn, and the third term is the Coulomb energy.  The nucleon 
density distribution, ρi(r) (i = p, n) is parameterized, and then −B(N, Z) is minimized with 
respect to the parameters in ρi(r).   

The obtained masses, RMS charge radii and proton numbers of several β−stable nuclei are 
compared with the empirical values given in Ref. [9].  The deviation of the calculated mass Mcal 
from the smoothed empirical mass Memp i.e., ΔM = Mcal − Memp is about 10 ~ 80 MeV, while the 
deviations of the RMS charge radii rRMS and the proton numbers of the β-stable nuclei Zβ are 
|ΔrRMS| < 0.01 fm and |ΔZβ| ~ 1, respectively.   

In order to reduce the deviations, we tune the parameters α, β, γ, δ in Eq. (1) and F0 in Eq. 
(2).  After tuning, |ΔM| < 2 MeV is achieved, mainly due to the slight lowering of the saturation 
energy, E0/N = −16.2 MeV.  Figure 2 shows the deviation of the calculated mass from the 
experimental data for mass-measured nuclei[10].  It is seen that the gross feature of the nuclear 
mass is well reproduced in the present TF calculation.   

It is noted that the EOS is altered by the parameter tuning only slightly around the 
saturation density.  Therefore, it has little influence on the EOS at high densities.  The 
maximum mass of the neutron star with the parameter-tuned EOS is very close to that obtained 
in Section 2, as shown in Fig. 3.   

4. Summary 

In this paper, we constructed the EOS for uniform nuclear matter at zero and finite 
temperatures starting from the realistic Hamiltonian.  Then, we performed the TF calculation of 
atomic nuclei, and tuned the parameters in the EOS so as to reproduce the empirical data of the 
β−stable nuclei.  Using this parameter-tuned EOS, we are planning to calculate the energy for 
nonuniform nuclear matter with the TF approximation, toward the nuclear EOS table for SN 
simulations.   

 

 
 

FIGURE 2.  The deviation of the calculated masses from the experimental data for mass-measured 
nuclei.  The calculated masses are obtained with the EOS after parameter tuning.   
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FIGURE 3.  Masses of the neutron stars with the EOS’s before and after tuning as functions of the 
central mass density.  The vertical dashed line shows the critical density, above which the causality is 
violated.   
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