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Excitation functions of ®Li(a, n), (d, t) and *B(a, n) reactions were directly measured in the
energy region of astrophysical interest using low-energy radioactive nuclear beams of 8Li and
12B. Each measured excitation function is strongly affected by one or more resonances through a
compound nucleus. The measured excitation functions are presented. Dominant r-process paths
through 8Li at various temperatures are discussed and our future experimental plan is also
presented.
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1. Introduction

It is pointed out that nuclear reactions on light neutron-rich radioactive nuclei play
important roles to produce so called ‘seed’ nuclei and determine the ratio of ‘seed’ to neutrons
at the preceding stage of the r-process. Especially, nuclear reactions through ®Li are thought to
be important because of filling a gap of atomic mass number A = 8 [1]. A systematic study of
astrophysical nuclear reaction rates on light neutron-rich nuclei using low-energy radioactive
nuclear beams (RNB) is in progress at the tandem facility of Japan Atomic Energy Agency
(JAEA). In this report, the measured excitation functions of °Li(a, n), (d, t) and *?B(a, n)
reactions are shown and dominant reaction paths through 8Li during the r-process are discussed.
Our future experimental plan is also presented.

2. Experiment

There exists two kinds of RNB generators at the tandem facility; one is a recoil mass
separator (RMS) as an in-flight secondary beam separator [2]. The other is an ISOL-based RNB
facility, named Tokai Radioactive lon Accelerator Complex (TRIAC) [3], which was
constructed and is operated under a joint project of High Energy Accelerator Research
Organization (KEK) and JAEA. Using the ®Li and B beams from the RMS with fixed energies
of 14.6 MeV and 24 MeV, respectively, direct cross-section measurements of Li(a, n)*'B [4]
and *B(a, n)**N reactions were performed with a gas chamber surrounded by neutron detector
arrays [5]. The gas chamber works not only as a gas counter, but also a He gas target [5]. Using
the 8Li beam from the TRIAC with various energies of 0.18 — 0.75 MeV/u, direct measurement
of the ®Li(d, t)’Li reaction was carried out using a CD, target and large-area position-sensitive
silicon detectors [6]. For more detailed experimental technique, please see the cited references.

3. Excitation functions

The excitation function of the 8Li(a, n)"'B reaction was measured in center-of-mass
energies (E.m) from 0.7 to 2.6 MeV. The resultant cross sections were roughly two times smaller
than previous measurements. A resonance-like structure was found at around E.,, = 0.85 MeV,
corresponding to the excited state located at E, = 10.9 MeV in *?B. For more detail, please see
reference [4].

The excitation function of the **B(a, n)*°N reaction was measured in the energy region of
E.n = 1.1 — 3.6 MeV, as shown in Fig.1. It covered the Gamow peaks of T = 2 — 5. The
resultant cross sections were almost consistent with the theoretical estimation by Fowler and
Hoyle [7]. At E; = 1.4 — 1.5 MeV, a resonance-like structure was observed and may
correspond to one or more excited states located at E, = 11.61, 11.70, 11.75 MeV in ¥N. The
cross section at E., = 1.5 MeV is about four times larger than the theoretical estimation. The
astrophysical reaction rate is directly deduced from measured cross sections by applying the
following formula:
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Where o(E) is the cross section, N is Avogadro’s number, m is the reduced mass, Kk is
Boltzmann’s constant, and T is the temperature. In the energy region below E., = 1.1 MeV and
above 3.8 MeV, we used cross section data estimated by Fowler and Hoyle. The resultant
reaction rate is roughly two times faster at around Ty = 3 than the theoretical estimation [7].
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Figure 1: Excitation function of the **B(a, n)™°N reaction. Black circles show present
results. The solid line indicates the theoretical estimation by Fowler and Hoyle [7].
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Figure 2: Excitation function of the ®Li(d, t)’Li reaction. Open circles show the present results.
The open triangle shows our measurement using the °Li beam from the RMS. Black triangles
indicate the previous results by Balbes et al. [8].
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The excitation function of the ®Li(d, t)’Li reaction was measured in the energy region of
E.n=0.3 -1.2 MeV, as shown in Fig. 2. It covers the Gamow peaks of Tq =1 - 3. Previous
measurement by Balbes et al. [8] was performed in higher energy region over E,, = 1.5 MeV.
At around E., = 0.8 MeV, a resonance-like structure was observed and its energy corresponds
to the E, = 22.4 MeV state in °Be. The reaction rate was deduced from present data by applying
the formula (1). In the energy region above 1.5 MeV, we used the cross section data in previous
measurement [8]. The cross section below E., = 0.3 MeV were estimated by linear
extrapolation from the present data point at E.,, = 0.3 MeV to 0.0 MeV. The resultant rate is
higher by one order of magnitude at around T4 = 1 than the previously reported values [8] due to
the resonance-like structure around E., = 0.8 MeV.

4. Reaction rates and dominant reaction paths via 5Li

In order to identify main flow paths through °Li at various temperatures during the r-
process, relative reaction rates (Y,Yg i<ov>) on ®Li were calculated, as shown in Fig. 3. The Y,
is fraction of each light element, proton (), neutron (), deuteron (Y4) and alpha particle (Y,,).
Those values were deduced by a network calculation in the r-process using the exponential
model [9]. Initial parameters of the network calculation were set at Ye (electron fraction) = 0.45,
Taye (dynamic time scale) = 5 ms and s/k (entropy) = 250. Those values are typical ones to
reproduce the r-process abundances under the neutrino-driven wind model in the Type II
supernovae. The Y is fraction of °Li and is set to unity. The reaction rates of ®Li(d, t) and
8Li(a,, n) are deduced from present results. The °Li(p, o) and the ®Li(n, y) rates are from
references [10] and [11], respectively.

10" ¢

10° ©

— E

I 3 F

5 107 ¢

> 2o

- 1E

£ 10" ¢
v E ]
I 10t L —e—Y <(d, v)> E
E +Ya<((x,n)> E
3 o Y<hy> | 2
107k ——Y<pap|
10'5?‘\““\““\““\““2
1 2 3 4 5

T

Figure 3: Relative reaction rates (Y,Ysi<ov>) on ®Li. The Y, is fraction of light element
and the Yg; is fraction of ®Li. For more detail, please see the text.
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As can be seen in Fig. 3, at Ty > 3.7, the 8Li(p, a)an reaction is the fastest reaction,
which destroys the ®Li. In To = 0.7 — 3.7, the ®Li(a, n)"'B reaction becomes the main path from
the 8Li. The 8Li(d, t)’Li rate is so slow that this reaction gives little effect to the r-process
abundances.

The relative reaction rates on "'B and '?B were calculated with the above mentioned
procedure. As the result, dominant reaction paths through ®Li at various temperatures are
identified as below;

To=2.7-3.6: ’Li(a, n)"'B(p, o)’Be(2a),
To=1.7 - 2.7 : ’Li(a, n)*B(ax, n)"N,
To=0.5—-1.7 : ®Li(a, n)"'B(n, v)*B(n, v)"°B.

5. Future plan

The measured cross sections of the ®Li(a, n)*'B reaction have relatively large errors of 20-30 %
[4] in the energy region below E., = 1.0 MeV, corresponding to Tg = 1 — 2. To improve
statistics and energy resolution of cross sections, we have a plan to measure the cross sections
below E, = 1.0 MeV using the ®Li beam from the TRIAC with the intensity of 10> pps and the
energy resolution of 2 %. The present gas chamber, named MSTPC [5], works well up to 10*
pps injection-rate.  Under higher injection rate, the gain instability occurs due to space charge
gain limitation around anode wires. We therefore decided to exchange the anode wires for gas-
electron-multiplier (GEM) foils for high-rate capability. For experimental requirement, gas
multiplication of the GEM-MSTPC should be enough high (over 10°) with He + CO, (10%) gas
and low gas pressure (about 100 Torr). A 400 um thick GEM foil was selected and gave 10° gas
gain successfully. An off-line test of the GEM-MSTPC for higher rate capability is in progress.
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