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This manuscript deals with the influence of parity-dependent nuclear level densities on astro-
physical reaction rates calculated in the Hauser-Feshbach framework. The inclusion of a parity
non-equipartition within the compound nucleus in these reactions has not been examined before.
We show that our approximative treatment - that accounts for such non-uniformly distributed
parities in the compound nucleus - can have an influence on reaction rates. For a more detailed
examination we refer to the corresponding paper [1].
Moreover, we shortly discuss the influence of microscopic calculated E1-strength functions on
reaction rates and show that for specific nuclei, additional low-lying E1 strength can increase the
reaction rate.
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1. Introduction

Stellar nucleosynthesis, e.g. explosive nuclear burning, involves a very large amount of nuclei,
which have not been fully explored by experiments yet. Therefore one needs to predict the reaction
cross sections and thermonuclear reactions rates by using theoretical models. The most widely
used approach is the so-called statistical or Hauser-Feshbach [2] model that describes the reaction
going via the formation of a compound nucleus. The main idea of this model is the fact that for
high nuclear level densities it is not possible to resolve resonances belonging to certain states.
Therefore, one can average over these resonances and obtain the reaction cross section without
specific knowledge of the resonances [3, 4, 5, 6]. Consequently, the applicability of this model
is strongly related to the total level density [6]. In case of explosive nucleosynthesis the relevant
reactions include nuclei with masses larger than A & 30 and accordingly these nuclei have a high
density of excited states compared to nuclei with lesser nucleons. The Hauser-Feshbach model is
therefore applicable for a large set of reactions.

2. Nuclear Level Densities

There are several different approaches to calculate the nuclear level density, all varying in their
complexity, applicability and quality. There are analytical models based upon the statistical Fermi
gas picture of the nucleus combined with phenomenological parameters (see [6, 7] and references
therein). Alternatively, there are microscopic models based on shell-model Monte Carlo ([8] and
references therein) or Hartree-Fock-BCS [9]. The advantage of these microscopic approaches is
the possibility to calculate the level density not only depending on excitation energy E but also
depending on spin J and parity π . Concerning the parity, it has been assumed that both parities are
equally given in any nucleus at any energy. This approximation is certainly true for most nuclei at
excitation energies above several MeV. Therefore, this is a good assumption for capture reactions
involving a compound nucleus with a large separation energy of the captured particle. However,
recent theoretical calculations and experimental studies showed that this assumption of equiparti-
tioned parities is not always true even for certain nuclei up to rather high excitation energies (see
[1] for more details and a list of references). Since the influence of this non-equipartition within the
target and the residual nucleus has been examined in [10], we go one step further: we additionally
introduce a parity non-equipartition also within the compound nucleus (see [1]).

2.1 Parity-dependence in the Statistical Model

The Hauser-Feshbach model makes use of the so-called transmission coefficients Tin(E,J,π;a)
and Tout(E,J,π;b) [1, 11] describing the entrance channel and the exit channel. The quantum num-
bers (E,J,π) are related to the compound nucleus. The variables a and b reflect the additional
quantum numbers for the target and the residual nucleus. These transmission coefficients are sub-
ject to quantum mechanical selection rules and should be obtained from a microscopic approach.
However, no such models exist (for more details see [1]). The only globally applicable model
is the optical model which only gives an energy dependence and a trivial dependence on angular
momentum due to the centrifugal barrier.
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In order to account for the deficiency of a lacking parity dependence in the optical model, we
intend to introduce a parity dependence within the compound nucleus and therefore we modify the
transmission coefficients in the following way:

T (E,J,π) −→ β (E,π;J)T (E,J,π) (2.1)

with the β defined by

β (E,π;J) =
2 ·ρcmp.(E,J,π)
∑π ρcmp.(E,J,π)

. (2.2)

Here we used the observation, that for the average transmission coefficients, there is the linear
relation T ∝ 〈Γ〉/D, involving the level spacing D = 1/ρ and the average level width 〈Γ〉 in the
considered reaction channel. The ρ(E,J,π) have to come from a method that resolves the parity
dependence [8, 10, 12, 13].

3. γ-strength Functions

Besides the nuclear level density, one also needs other important nuclear input such as masses,
optical models and strength functions. In case of γ-decays one needs the strength-functions for the
considered transitions types. In our case, the only considered transitions are E1 and M1 transitions.
The E1 transitions are more likely than the M1 transitions since they are of electric type and have
the same multipolarity L = 11. However, E1 transitions and M1 transitions differ concerning the
conservation of parity: E1 transitions change the parity while M1 transitions conserve it.

In general one calculates the according transmission coefficients in the following way (X =̂
type of transition; L =̂ multipolarity):

TXL(Eγ) = 2πE2L+1
γ fXL(Eγ). (3.1)

with fXL being the according strength-function. The latter can be calculated in different ways: The
E1 strength function fE1 is usually calculated based upon the Lorentzian description of the giant
dipole resonance. However, this approach is known to be less good at low energies [14, 7] and it
cannot reproduce possible additional low-lying strength. An alternative is therefore to calculate the
strength function in a microscopical model which can resolve these structures. These calculations
are based on the Quasiparticle Random Phase Approximation on top of Hartree-Fock-Bogoliubov
[15, 16] or relativistic mean-field models (RQRPA) [17]. Litvinova et al. recently extended the
RQRPA (see [18]) to include quasiparticle-phonon coupling. This approach reproduces experi-
mental strength distributions very well, including observed additional low-lying strength [18].The
M1 transitions are usually calculated in the single-particle or Weisskopf approach, fM1 = constant.
An alternative approach uses a phenomenological Lorentzian distribution of the M1 strength [7]
with the parameters EM1 = 41A−1/3 and Γ = 4MeV. We will restrict ourselves to the use of the
single-particle model for M1 transitions in this paper.

1Magnetic transitions are smaller than electric transitions of the same multipolarity. At the same time transitions of
the same type (magnetic or electric) are less likely with increasing multipolarity.
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4. Results

In the following we will restrict ourselves to neutron capture reactions, and in particular to
(n,γ)-reactions. The relevant energy scale for these reactions is the neutron separation energy Sn.

4.1 Parity-dependence in the Compound Nucleus

In Fig. 1 we can see the influence of the parity treatment on the reaction rate for (n,γ)-
reactions. We used two different sets of parity-distribution: the one from Hilaire et al. [13] and the
one from Mocelj et al. [10]. Both distributions give nearly the same behavior.
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Figure 1: Ratio of the reaction rate using a full parity dependence to the reaction rate using equipartitioned
parities in several nickel isotopes. The reaction rates are calculated for T = 109K.

We can see an odd-even effect resulting from pairing, since an even A compound nucleus
has a larger neutron separation energy (and is therefore higher excited) than its odd A neighbor
nuclei. If the excitation energy is higher, β is closer to unity than for lower energies and the ratio in
Fig. 1 also approaches unity. At the neutron rich side of the nickel isotopes, we see an increment:
this results from the constant single-particle M1 strength which becomes larger than the E1 strength
(which has a Lorentzian shape) for low γ-energies and these nuclei are dominated by M1 transitions
since positive parity dominates up to rather high energies (due to the filling of the g9/2 and g7/2

orbits). Therefore the parity conserving M1 transitions - that are larger are larger at these low
energies because they are calculated using the single-particle approach - are favored. This implies
that an improved description of the M1 transitions is needed in the vicinity of the introduced parity
treatment.

Concerning the tin isotopes we do not see large differences between both parity distributions
again. However, the shell-structure in tin is more complicated due to the h11/2 intruder orbit. For a
more extensive discussion about the results refer to Ref. [1].

4.2 Microscopic γ-strength Functions

As we can see in Fig. 2, the influence of low-lying E1 strength on the reaction rate and the
cross section depends on the location of this additional strength relative to the neutron threshold. If
the additional strength is located just around the threshold, it can strongly increase the cross section
and reaction rate. We will discuss this in an upcoming manuscript in more detail.
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Figure 2: Laboratory cross-sections and stellar reaction rates (left panel) for the reaction 131Sn(n,γ)132Sn
using three different prescriptions for the fE1 (see Eq. 3.1). For the calculation labelled “QTBA” we used the
microscopic strength function obtained in the RQTBA [18], “Lorentz” is a simple Lorentzian prescription
normalized to the total strength of the “QTBA” function, and “QRPA” the microscopic strength function of
[15]. “parity” and “no parity” are calculations either using our parity treatment introduced above or without
using any parity dependence at all. The right panel shows the comparison between the “QTBA” and the
“Lorentz” strength function. The vertical line marks the neutron separation energy in 132Sn.
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