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The approximate energy expression for the variational calculation of nuclear matter is refined by 
taking into account three-body cluster terms with tensor correlations.  In this variational 
method, the energy expression is constructed as an explicit functional of various two-body 
distribution functions which are regarded as variational functions.  Then, the Euler-Lagrange 
equations are derived and fully minimized energies are obtained.  The previous energy 
expression does not include the kinetic-energy terms caused by noncentral correlations 
sufficiently, and the obtained energy of nuclear matter is too low.  Therefore, in this study, the 
energy expression is improved by taking into account important missing three-body-cluster 
kinetic-energy terms caused by tensor correlations.  In this refinement, necessary conditions on 
tensor structure functions play important roles.  The obtained energy per neutron for neutron 
matter with the v6’ potential is considerably higher than that of the old energy expression.   
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1. Introduction 

The equation of state (EOS) of nuclear matter is the crucial ingredient in neutron star 
studies, and the many-body approach starting from the realistic nuclear Hamiltonian provides 
us with a reliable nuclear EOS.  We have been studying a variational method with 
approximate energy expressions.[1, 2]  In this method, we construct the energy expression 
as an explicit functional of spin-isospin dependent radial, tensor and spin-orbit distribution 
functions which are regarded as variational functions.  Then, the Euler-Lagrange equations 
are derived, and fully minimized energies are obtained.  When we consider the two-body 
central force only, such as in liquid 3He, we obtain reasonable results with the variational 
method.  However, in the case of nuclear matter in which the tensor and spin-orbit forces 
play important roles, the numerically calculated energies are too low, and the noncentral 
distribution functions have unrealistic long tails.  The main reason for these unsatisfactory 
results is that the kinetic energy caused by the noncentral correlation is not included 
sufficiently in the energy expression.  Therefore, in this study, we refine the energy 
expression with respect to the tensor correlation, as the first step of the refinement.   

 

2. Energy Expression for Neutron Matter 

In this paper, we consider neutron matter at zero temperature, and start from the following 
nuclear Hamiltonian; 
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Here, m is the neutron mass, and the two-body potential Vij is written as  
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where STij is the tensor operator, Lij is the orbital angular momentum operator and Psij is the spin 
projection operator. 

The energy expression is constructed with the radial distribution functions FCs(r), the 
tensor distribution function FT(r) and the spin-orbit distribution function FSO(r) as well as the 
structure functions SC1(k) and SC2(k), which are defined as 
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where Ω is the volume of the system.  In Eqs. (6) and (7), Ss(k) (s = 0, 1) is  
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with ρ being the number density.   

Using these functions and the auxiliary functions FCs(r), gT(r) and gSO(r) defined in Ref. 
[2], the energy per neutron in neutron matter was constructed in Ref. [2] as follows:   
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where 

 

[ ] [ ]∑∫
=

∞ −−
−−=

2

1

4

CFC

2
CFCC

02

2
CT

)()(
)()(1)()12(

16 n n

nn dkk
kSkS

kSkSkSn
mN

E 　

　
ρπ

h
.     (10) 

 
The first term on the right-hand side of Eq. (9) is the one-body kinetic-energy term with EF 
being the Fermi energy.  The second and the third terms are the potential energies, and the 
remaining terms are the kinetic energies caused by the correlation between neutrons.   
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3. Refinement of the Energy Expression for Neutron Matter 

In this section, we refine the kinetic-energy expression in Eq. (9) with respect to the tensor 
correlation using the cluster expansion method.  First, we assume the Jastrow-type wave 
function 
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Here, Sym[ ] is the symmetrizer with respect to the order of the factors, Φ is the Fermi-gas wave 
function and fij is the correlation function; 
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where fCs(r) and fT(r) are the spin-dependent central and tensor correlation functions, 
respectively. 

Then, we cluster-expand ΔE/N = <H>/N – Eold/N with <H> being the expectation value of 
the Hamiltonian.  Since the two-body cluster terms and the main part of the central-type three-
body cluster terms in <H>/N are completely included in Eold/N, the main part of ΔE/N is the 
three-body cluster terms including the tensor correlation fT(r).  We can express the main part of 
ΔE/N using the structure functions as 
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where ST(k) is the tensor structure function defined as 
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Here, we note that ΔΕ3/N goes to negative infinity through the variational procedure.  In 

order to convert this harmful term to a harmless one, we take into account the following 
necessary conditions on the tensor structure function: 
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Then, we refine the expression ECT/N in Eq. (10) as follows:  
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This term includes ΔE3/N properly and guarantees the necessary conditions on the structure 
functions, Eqs. (6), (7), (15) and (16).   
 

4. Numerical calculations and discussion 

Using the refined energy expression, we calculate the energy per neutron in neutron matter 
with the v6’ potential.  As shown in Fig.1, the obtained energies are higher than those of the 
old energy expression.  Although not shown here, the unrealistic long tail of FT(r), which 
accompanied the old expression, disappears with the new energy expression.  We note that  
SCT2(k) obtained with the old energy expression violates the inequality (16), which implies that 
the necessary conditions on the tensor structure function play important roles.   

We also refined the energy expression for symmetric nuclear matter in a similar way.  
Numerical calculations of the energy for symmetric nuclear matter are now in progress.   
 

 
Figure 1: Energy per neutron for neutron matter with the v6’ potential.  The solid line is for the refined 
energy expression and the dashed line is for the old one.  
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