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The approximate energy expression for the variational calculation of nuclear matter is refined by
taking into account three-body cluster terms with tensor correlations. In this variational
method, the energy expression is constructed as an explicit functional of various two-body
distribution functions which are regarded as variational functions. Then, the Euler-Lagrange
equations are derived and fully minimized energies are obtained. The previous energy
expression does not include the Kkinetic-energy terms caused by noncentral correlations
sufficiently, and the obtained energy of nuclear matter is too low. Therefore, in this study, the
energy expression is improved by taking into account important missing three-body-cluster
kinetic-energy terms caused by tensor correlations. In this refinement, necessary conditions on
tensor structure functions play important roles. The obtained energy per neutron for neutron
matter with the v6’ potential is considerably higher than that of the old energy expression.
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1. Introduction

The equation of state (EOS) of nuclear matter is the crucial ingredient in neutron star
studies, and the many-body approach starting from the realistic nuclear Hamiltonian provides
us with a reliable nuclear EOS. We have been studying a variational method with
approximate energy expressions.[1, 2] In this method, we construct the energy expression
as an explicit functional of spin-isospin dependent radial, tensor and spin-orbit distribution
functions which are regarded as variational functions. Then, the Euler-Lagrange equations
are derived, and fully minimized energies are obtained. When we consider the two-body
central force only, such as in liquid 3He, we obtain reasonable results with the variational
method. However, in the case of nuclear matter in which the tensor and spin-orbit forces
play important roles, the numerically calculated energies are too low, and the noncentral
distribution functions have unrealistic long tails. The main reason for these unsatisfactory
results is that the kinetic energy caused by the noncentral correlation is not included
sufficiently in the energy expression. Therefore, in this study, we refine the energy
expression with respect to the tensor correlation, as the first step of the refinement.

2. Energy Expression for Neutron Matter

In this paper, we consider neutron matter at zero temperature, and start from the following
nuclear Hamiltonian;

H:_ih_zv“i% )
= 2m !

i<j

Here, m is the neutron mass, and the two-body potential V;; is written as

Vi=2 {VCs () + S[VT (7;)Sw; +Vso (’3‘/')(3 ‘L )]+ Vs 0) L5 + 5 Vg (rl.j)(s ' Li/')z}Psij . (2

1
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where St; is the tensor operator, L; is the orbital angular momentum operator and Py; is the spin
projection operator.

The energy expression is constructed with the radial distribution functions Fc(r), the
tensor distribution function Fr(r) and the spin-orbit distribution function Fso(r) as well as the
structure functions Sc1(k) and Sc,(k), which are defined as

F(np) = QZZI TT(xl’“"xN)RlzsU(xl"“'xN)d’%'“drN , (s=0,1) 3)
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where is the volume of the system. In Eqgs. (6) and (7), Sy(k) (s =0, 1) is
S,(k) = p|[F.(r) — F, ()] exp(ik - r)dr, ®)
with p being the number density.
Using these functions and the auxiliary functions Fc(r), gr(r) and gso(r) defined in Ref.

[2], the energy per neutron in neutron matter was constructed in Ref. [2] as follows:
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where
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The first term on the right-hand side of Eq. (9) is the one-body kinetic-energy term with Er
being the Fermi energy. The second and the third terms are the potential energies, and the
remaining terms are the kinetic energies caused by the correlation between neutrons.
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3. Refinement of the Energy Expression for Neutron Matter

In this section, we refine the kinetic-energy expression in Eq. (9) with respect to the tensor
correlation using the cluster expansion method. First, we assume the Jastrow-type wave
function

P(x,xy) =Sym{Hﬁj:|cD(xl,---,xN). (11)

i<j

Here, Sym[ ] is the symmetrizer with respect to the order of the factors, @is the Fermi-gas wave
function and f;; is the correlation function;

fij = Z[fcs (’”y) +5f7 (’”g/)ST;j ]Pw , (12)

1
s=0

where fc(r) and fr(r) are the spin-dependent central and tensor correlation functions,
respectively.

Then, we cluster-expand AE/N = <H>/N — Eq4/N with <H> being the expectation value of
the Hamiltonian.  Since the two-body cluster terms and the main part of the central-type three-
body cluster terms in <H>/N are completely included in E, /N, the main part of AE/N is the
three-body cluster terms including the tensor correlation /7(»). We can express the main part of
AEIN using the structure functions as

AE, _ h? £ B 2_i 3.
N - 32m7[2pj.0{[SC2(k) 1] [ST(k)] 18 [ST(k)] }k dk , (13)

where St(k) is the tensor structure function defined as
Sy(k) =4ap|  Fy(r) j,(kr)rPdr (14)

Here, we note that AE3/N goes to negative infinity through the variational procedure. In
order to convert this harmful term to a harmless one, we take into account the following
necessary conditions on the tensor structure function:

N 2
Scri (k) :ﬁ<2(‘7[ 'k)eXp(ik"’i) >:SC2(k)_%ST(k) 20, (15)
Sera(k) =ﬁ<2(q < k) explik ;) >= S0 +5:(020. ()
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Then, we refine the expression Ect/N in Eq. (10) as follows:

Ectnow __ n’ J‘w [Sc1(k) _1] [S01(k) - SCF(k)]Z
N 167°mp? 0 Sei(k)/Ser (k)
S [SCTn (k) _l] [SCTn (k) — SCF (k)]2 4
W sew D

This term includes AE3/N properly and guarantees the necessary conditions on the structure
functions, Egs. (6), (7), (15) and (16).

4, Numerical calculations and discussion

Using the refined energy expression, we calculate the energy per neutron in neutron matter
with the v6’ potential. As shown in Fig.1, the obtained energies are higher than those of the
old energy expression. Although not shown here, the unrealistic long tail of F(r), which
accompanied the old expression, disappears with the new energy expression. We note that
Scr2(k) obtained with the old energy expression violates the inequality (16), which implies that
the necessary conditions on the tensor structure function play important roles.

We also refined the energy expression for symmetric nuclear matter in a similar way.
Numerical calculations of the energy for symmetric nuclear matter are now in progress.
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Figure 1: Energy per neutron for neutron matter with the v6’ potential. The solid line is for the refined
energy expression and the dashed line is for the old one.
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