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If a primordial magnetic field was present during photon decoupling and afterward, a finite neu-
trino mass could affect the Cosmic Microwave Background (CMB). In previous work [1], we
studied the effect of a neutrino mass on the vector and tensor modes of the CMB power spectra.
In this work, we also calculated the scalar mode and found that a neutrino mass also has a large
effect on it. We decomposed the scalar, vector and tensor modes into Integrated Sachs-Wolfe
(ISW), polarization (Pol), doppler (Dop) and Sachs-Wolfe (SW) components, and studied which
components are affected strongly by the neutrino mass. We found that a cancellation among
neutrino effects on these components offsets each other and the total effect becomes small.
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1. Introduction

The primordial magnetic field is presumed to have existed in the early universe as a source of
the magnetic field in clusters of galaxies today [2, 3]. Although some astrophysical processes, such
as the dynamo mechanism, can generate the magnetic field on small scales, a primordial magnetic
field can explain the origin of the large scale magnetic field. A primordial magnetic field could
affect the CMB spectrum in two ways: 1) Baryons are affected by the Lorentz force and then
influence the CMB spectrum indirectly through Thomson scattering, 2) The anisotropic stress of
the magnetic field sources a shear as shown in Ref. [5, 1].

In our previous work [1], we examined the neutrino effect on the CMB vector and tensor mode
in the presence of a primordial magnetic field. We showed that a finite neutrino mass enhances the
effective wave number which increases the CMB power spectrum at lower multipoles ` < `mν . This
arises from the cancellation of the anisotropic stresses between the magnetic field and the massive
neutrinos. In this work, we calculate the scalar mode in a similiar way and decompose the scalar,
vector and tensor modes into ISW, Pol, Dop and SW components. This decomposition is important
to study the details of the neutrino mass effect.

2. Equations and Initial conditions

To begin, we choose metric perturbations in terms of the scale factor a,

δgi j = 2a2
(

H(0)
L Q(0)γi j +∑

m
H(m)

T Q(m)
i j

)

, (2.1)

where m = 0 is the scalar mode, m = 1 is the vector mode and m = 2 is the tensor mode. Here, Q(0)

and Q(m)
i j s are the harmonic modes for the scalar, vector and tensor components. H (0)

L and H(m)
T s are

synchronous metric perturbations. The scalar mode has two parameters H (0)
L and H(0)

T , although
the vector and tensor modes have only transverse perturbations.

We write the distribution functions for neutrinos as

fh(q,ni,ki,τ) = f̄ (q)+δ fh(q,ni,ki,τ) ≡ f̄ (1+Θh) , (2.2)

where δ fh is the perturbed part, q is the comoving momentum, ni is its direction, τ is the conformal
time, and Θh is the normalized perturbation. The subscript h means hot dark matter (i.e. massive
neutrinos). We use the subscript ν to denote massless neutrinos, i.e. Xν . In order to calculate
the CMB power spectrum, we need the linearized Boltzmann equation for massive particles [1].
Expanding the perturbation in spherical harmonics as Θh = ∑`,m(−i)`

√

4π/(2`+1)Y m
` Θ(m)

h` , we
obtain the Boltzmann hierarchial equations:

Θ(m)′
h` =

qk
ε

(

√

`2 −m2

2`−1
Θ(m)

h`−1 −

√

(`+1)2 −m2

2`+3
Θ(m)

h`+1

)

+S(m)
h` , (2.3)

S(0)
h0 = H(0)′

L
∂ ln f̄
∂ lnq

, S(0)
h2 =

2
3

H(0)′
T

∂ ln f̄
∂ lnq

, S(1)
h2 =

1
√

3
H(1)′

T
∂ ln f̄
∂ lnq

, S(2)
h2 = H(2)′

T
∂ ln f̄
∂ lnq

,(2.4)

where a prime denotes the derivative with respect to the conformal time τ . The evolution of the
perturbation variables is given by the Einstein equations [4] to be:

H(m)′′
T +2H H(m)′

T + k2τ2S(m)
E = 8πGa2(ρν π(m)

ν +ργπ(m)
B ) , (2.5)
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where πν is the neutrino anisotropic stress normalized by its energy density ρν and πB is the
anisotropic stress of the magnetic field normalized by the photon energy density ργ . Here S(0)

E =

−H(0)
L − 1

3 H(0)
T , S(1)

E = 0 and S(2)
E = H(2)

T . On superhorizon scales, kτ � 1, the S(m)
E terms can be

neglected.
In order to obtain the power spectrum of the CMB and its polarization, we need to expand

the temperature perturbation Θ with spherical harmonics, and expand the polarization fluctuation
Q± iU with spin-2 harmonics. The expansion coefficients are Θ(m)

` , and E(m)
` ± iB(m)

` respectively.
Decomposing the integral solutions for Θ into the polarization (Pol) effect, the Integrated Sachs-
Wolfe (ISW) effect, the doppler (Dop) effect, and the Sachs-Wolfe (SW) effect, the Θ’s are given
as follows,

Θ(0)
` (τ0,k)
2`+1

=

∫ τ0

0
dτe−τc

(

τc
′(Θ(0)

0 −H(0)′′
T /k2) j(00)

` (SW)

+ τc
′(v(0)

b −H(0)′
T /k) j(10)

` (Dop)

− (H(0)′′′
T /k2 +H(0)′

T /3+H(0)′
L ) j(00)

` (ISW)

+ τc
′P(0) j(20)

`

)

, (Pol) (2.6)

Θ(1)
` (τ0,k)
2`+1

=

∫ τ0

0
dτe−τc

(

τc
′(v(1)

b −H(1)′
T /k) j(11)

` (Dop)

− (H(1)′′
T /k) j(11)

` (ISW)

+ τc
′P(1) j(21)

`

)

, (Pol) (2.7)

Θ(2)
` (τ0,k)
2`+1

=

∫ τ0

0
dτe−τc(−H(2)′

T j(22)
` (ISW)

+ τc
′P(2) j(22)

` ) , (Pol) (2.8)

where τ0 is the present conformal time, while the radial temperature function j(`
′m)

` (x), the radial
E function ε (m)

` (x) and the radial B function β (m)
` (x) are evaluated at x = k(τ0 − τ). Here, we have

used the anisotropic scattering source P(m) ≡ (Θ(m)
2 −

√

6E(m)
2 )/10 and denote the baryon velocity

by v(m)
b . We defined the optical depth as τc(τ) ≡

∫ τ0
τ aneσT dτ̃ , where ne is the number density of

free electrons and σT is the Thomson cross section. From Eqs. (2.6) - (2.8), we can then derive the
CMB power spectrum of temperature anisotropies.

Using the perturbed Einsteins and Boltzmann equations, we can derive initial conditions for
massless neutrinos as follows [5, 6]:

π(m)
ν = −π(m)

B
Rγ

Rν
(1−π(m)

2 k2τ2) (2.9)

where π(1)
2 = 45

14(4Rν +15) and π(2)
2 = 15

14(4Rν+15) . For the scalar mode, we need to study the matter

contributions carefully and obtain π (0)
2 = − 1

42
Rγ
Rν

14Rν ∆B/π(0)
B −55

4Rν+5 as shown in Ref. [6], where ∆B is
the energy density of the magnetic field normalized by the photon energy density.

If neutrinos are massive, the initial conditions are changed. As shown in [1], initial conditions
for massive neutrinos become:

ρhπ(m)
h ' ρνπ(m)

ν (1−
1
2

5
7π2 H2

0 ΩRm2
ντ2) . (2.10)
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Figure 1: Left: The effective wave number keff with π(m)
2 = 1. Right: The scalar type CMB spectrum from

a primodial magnetic field. The thin lines are for the massless case, and the thick lines are for the massive
case.
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Figure 2: Vector (left) and tensor (right) type CMB spectra from a primodial magnetic field. The thin lines
are for the massless case, while the thick lines are for the massive case.

We here define the effective wave number k(m)
eff by

k(m)2
eff = k2 + k(m)2

mν , k(m)
mν =

√

1
2

5
7π2 H2

0 ΩRm2
ν/π(m)

2 . (2.11)

Replacing k with keff in Eq. (2.9), we obtain similar initial conditions for massive neutrinos. On
small scales, k > keff, the neutrino mass effect is negligible. However, if k is smaller than keff, a
neutrino mass changes the time evolution of the perturbation dramatically. In the CMB spectrum,
this effect is clear for k < k(m)

mν , i.e. ` < `
(m)
mν where `

(m)
mν ≡ k(m)

mν τ0. The exact values of k(m)
mν and `

(m)
mν

are:

k(m)
mν ∼ 1.3×

mν

eV
×

√

1/π(m)
2 ×10−2 Mpc−1 , `

(m)
mν ∼ 180×

mν

eV
×

√

1/π(m)
2 . (2.12)

3. Calculation and Discussion

We have modified the CAMB code [7] to calculate neutrino mass effects in two cases, ∑mν =

0eV and ∑mν = 1eV using the best-fit parameters from the WMAP-5yr analysis [8]. The spectrum
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used in this calculation is the same as in Ref. [9] with a spectral index nB =−2.5 and an amplitude
Bλ = 1nG. Figs. 1 and 2 are the results.

If the neutrino mass is finite, all modes are enhanced at lower multipoles. In the scalar mode,
the ISW and SW effects are enhanced, but they cancel each other. The reason for the increase of
the ISW and SW effects is the increased effective wave number. Similarly, in the vector mode, the
ISW and Dop effects become large at lower `, though the total effect is small. The tensor mode has
ISW and Pol components. The increase of the ISW effect directly enhances the total spectrum. The
multipole `

(m)
mν is `

(0)
mν = 103, `

(1)
mν = 136 and `

(2)
mν = 233 for ∑mν = 1eV. These scales are shown on

Fig. 1.
We note that the Pol effect becomes very large at ` ∼ 2. This is because of the radial temper-

ature functions j(2m)
` shown in Ref. [4]. These radial functions behave as j(2m)

` (x) ∝ x`−2 at x ∼ 0.
Then the Pol component of the CMB power spectrum CT T (m)

`,Pol is calculated as

(2l +1)2CTT (m)
`,Pol ∝

∫

dkk2nB+5k4
mν

j(2m)2
` (k(η0 −ηrec)) ∝

∫

dkk2(nB+3)+2`−5 . (3.1)

If the spectrum index is nearly scale invariant, nB ∼ −3, this integral has a logarithmic infrared
divergence for the quadrapole ` = 2 term, although it is regular for the higher multipoles ` ≥ 3.

4. Summary

We studied a neutrino mass effect on the CMB spectra generated by the primordial magnetic
field. If neutrinos are massive, the effective wave number becomes large because of the compen-
sation mechanism of the anisotropic stress between massive neutrinos and the magnetic field. This
new effect changes the specra in large scales, ` < `

(m)
mν . We found that there is large neutrino mass

effect on the ISW and SW effects in the scalar mode, the ISW and Dop effects in the vector mode,
and the ISW component in the tensor mode. However, these large effects cancel one another and
the total effect becomes small, except for the tensor mode. As a result, the neutrino mass effect
become large in tensor TT mode.
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