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1. Introduction

Gravitational microlensing (in the local group) refers e temporal brightening of a back-
ground star due to intervening objects. Einstein (1936) éxemined (micro)lensing by a single
star, and concluded that “there is no great chance of oligpthis phenomenon.” Some important
works were performed in intervening years by [45] and [38},the research topic was revitalised
by Paczyski (1986) who proposed it as a method to detect compact m™atter objects in the
Galactic halo.

The original goal is now out of favour, since we know with higtecision that most of the
dark matter must be non-baryonic, e.g. from observatiomsiofowave background radiation and
nucleosynthesis (at the time of his paper, this was, howewetear). Nevertheless, gravitational
microlensing has turned into a powerful technique with digeapplications in astrophysics, includ-
ing the study of the structure of the Milky Way, stellar atqlosres and the detection of extrasolar
planets and stellar-mass black hole candidates. The fisldnaale enormous progress in the last
two decades. There have been a number of reviews on this(mpic[38, 35, 19, 51]), the most
recent highlight was given in [25]. This article gives arraaluction to microlensing, aimed at a
level for a starting PhD student. Together with other tatkéhie workshop and proceedingsone
can gain a thorough feeling about the state-of-the-ariarekdn this field (as of 2008).

The reference list given here is seriously incomplete (daddul). For more complete refer-
ences and information about ongoing microlensing sunsaesthe review papers mentioned above
and the web siteht t p: / / m ens. net/ (built by Szymon Koztowski, Subo Dong and Lukasz
Wyrzykowski).

2. What is gravitational microlensing?

The light from a background source is deflected, distorteti(de)magnified by intervening
objects along the line of sight. If the lens, source and oleseare sufficiently well aligned, then
strong gravitational lensing can occur. Depending on theitgy object, strong gravitational lensing
can be divided into three areas: microlensing by stars,iptedimages by galaxies, and giant arcs
and large-separation lenses by clusters of galaxies. Foohansing, the lensing object is a stellar-
mass compact object (e.g. normal stars, brown dwarfs dasteimnants [white dwarfs, neutron
stars and black holes]); the image splitting in this casesiglly too small (of the order of milli-
arcsecond in the local group) to be resolved by ground-bidescopes, thus we can only observe
the magnification change as a function of time.

The left panel in Fig. 1 illustrates the microlensing geametA stellar-mass lens moves
across the line of sight towards a background star. As ther@ves closer to the line of sight, its
gravitational focusing increases, and the backgroundbsteomes brighter. As the source moves
away, the star falls back to its baseline brightness. If tlmtions of the lens, the observer and
the source can be approximately taken as linear, then the digrve is symmetric. Since the
lensing probability for microlensing in the local group itbe order of 10° (see section 5), the
microlensing variability usually should not repeat. Sipt®tons of different wavelengths follow
the same propagation path (geodesics), the light curvea(fmint source) should not depend on

Lavailable aht t p: / / pos. si ssa. it/ cgi - bi n/reader/ conf. cgi ?confi d=54
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Figure 1: The left panel shows a side-on view of the geometry of miersileg where a lens moves across
the line of sight towards a background source. The right stm@vs two light curves corresponding to two
dimensionless impact parametasg= 0.1 and 0.3. The time on the horizontal axis is centred on th& pea
timetg and is normalised to the Einstein radius crossing tignerhe lower the value afig, the higher the
peak magnification. For the definitionsaf andtg see section 4.1.

the colour. The characteristic symmetric shape, non-tapéi#y, and achromaticity can be used
as criteria to separate microlensing from other types déisser stars (exceptions to these rules will
be discussed in section 4.2).

3. Lens equation, image positions and magnifications

To derive the characteristic light curve shape shown initditg panel of Fig. 1, we must look
closely at the lens equation, and the resulting image posithind magnifications for a point source.

3.1 Lens equation

The lens equation is straightforward to derive. Figureuthates a side-on view of the lensing
configuration. Simple geometry yields
z Ds

=< Dy’ (3.1)

o
@
Qb

i +D

whereDy, Ds andDgys are the distance to the lens (deflector), distance to thesand distance
between the lens (deflector) and the sourp«s the source position (dlstance perpendicular to the
line connecting the observer and the Ier&'s)s the image position, and is the deflection angle. For
gravitational microlensing in the local grouPgs = Ds — Dg.? Mathematically, the lens equation
provides a mapping between the source plane to the lens. plare mapping is not necessarily
one-to-one.

2For cosmological microlensing in an expanding universe,distances should be taken as angular diameter dis-
tances, and in generBlys # Ds — Dy. See the review by Wambsganss in these proceedings on aggoabimicrolens-

ing.



Introduction to Gravitational Microlensing Shude Mao

N
¢ B
6
0 2 D 1
@
Dd Dds
D

S

Figure 2: lllustration of various distances and angles in the leng#dgn (egs. 3.1 and 3.2).

Dividing both sides of eq. (3.1) bys, we obtain the lens equation in angles
B+d=8, (3.2)

whereﬁ =1 /Ds, 6 = E/Dd, andd = d x Dys/Ds is the scaled deflection angle. These angles are
illustrated in Fig. 2.

For an axis-symmetric mass distribution, due to symmelny, dource, observer and image
positions must lie in the same plane, and so we can drop thenggn, and obtain a scalar lens
equation:

B+a=86. (3.3)

3.2 Image positions for a point lens

For a point lens at the origin, the deflection angle is given by

5 4GM 1 -
4= T?E’ (3.4)
and the value of the scaled deflection angle is
Dgs 5, _ Dds 4GM _ 67
—_ = — = — = D 9. 3'5
a=pl0=p @p,6= 6 ¢ D (3:5)

where we have defined the angular Einstein radius as

e 1-Dg/Ds [ Ds \ Y2/ M Y2
% =p, ~0>°Ma§/ 5, /s <8kpc> 03, ) (3.6)

The lens equation for a point lens in angles is therefore

[
B+ 5 = 6. (3.7)
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We can further simply by normalising all the angles@ayrs= 3/6g, r = 8/6¢, the above equation
become3 1
rs+ = r. (3.8)

For the special case when the lens, source and observerrégetiyealigned (s = 0), due to axis-
symmetry along the line of sight, the images form a ring ($&mn” ring) with its angular size
given by eq. (3.6).

For any other source positiag # 0, there are always two images, their positions are given by

st +4

S —
The ‘+' image is outside the Einstein radius (> 1) on the same side of the source, while the *
image is on the opposite side and inside the Einstein radius(0 and|r_| < 1). The angular
separation between the two images is

DO =6:(ry —r_)=0eV/4+Tr (3.10)

The image separation is of the same order of the angulardiindiameter whens < 1, and thus
will be in general too small to be observable given the tylpgeeing from the ground~( one
arcsecond); we can only observe lensing effects throughifieagion. One exception may be the
VLT interferometer (VLTI) which can potentially resolveghwo images. This may be important
for discovering stellar-mass black holes since they haggtamage separations due to their larger
masses than typical lenses with mas8.3M, ([13, 42]).

The physical size of the Einstein radius in the lens planévisngby

4GM DgDgs Dy Dy Ds \Y2/ M \¥?
re = Db = ) — ~22AU [4x =9 (1-29) [ = 2 ) . (@311
E= Pd%E @ D \/ . Ds< DS> <8kpc> 0.3M,, (3.11)

(3.9)

So the size of the Einstein ring is roughly the scale of tharssystem, which is a coincidence that
helps the discovery of extrasolar planets around lenses.

3.3 Image magnifications

Since gravitational lensing conserves surface brightibesnagnification of an image is sim-
ply given by the ratio of the image area and source area. Feryasmall source, we can consider
a thin source annulus with anghp (see Fig. 3). For a point lens, this thin annulus will be mabpe
into two annuli, one inside the Einstein ring and one outside

The area of the source annulus is given by the product of tialrevidth and the tangential
lengthdrs x rAg. Similarly, each image aread x rAg, and the magnification is given by

_drxrAg rﬂ

— Y 3.12
H drsxrdd@Q  rgdrg ( )
For the two images given in eg. (3.12), one finds
2 42 _ 2 42
L e AL (3.13)
4ro\/Is2+4 drs\/I2+4

3rsis not to be confused with the size of the star, which we deasteg.
4This is a special case of the determinant of the Jacobiareitetts mapping, see section 4.3.
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The magnification of the ‘+’ image is positive, while the'image is negative. The former image
is said to have positive parity while the latter negativEhe total magnification is given by

B ] = 2 (3.14)
" T a2+ 4 '
and the difference is identical to unity
o]~ |po| =1, (3.15)

We make some remarks about the total magnification and imegggeations:

1. Whenrs=1, u = 3/v/5~1.342, corresponding to about 0.319 magnitude. Such a diiere
is easily observabfe and so the area occupied by the Einstein ring is usuallyntakethe
lensing “cross-section.”

2. Whenrg — oo, |, /u_| — rs*, u — 1+2rs~4. The angular image separation is given by
AB == (rs+2rs_l)9E

3. High magnification events occur when— 0. The asymptotic behaviours gue— rs=1(1+
3rs?/8), AB — (2+r1s%/4)6g, anddr/drs — 1/2. The last relation implies that, at high
magnification, the image is compressed by a factor of 2 inal&t direction (see Fig. 3).

Figure 3: Images of a thin annulus from to rs+ drs by a point lens on the plane of the sky. The dashed
line is the Einstein ringAg is the angle subtended by the thin annulus.

4. Light curve and microlensing degeneracy

Given a source trajectory, we can easily describe the stddigat curve with a few parameters
which suffers from the microlensing degeneracy.

5Let us imagine two arrows for the thin annulus (see Fig. 3} iorthe radial direction and one in the tangential
direction respectively. For the negative parity image,dberesponding tangential arrow for the image is reversed wi
respect to that in the source, while in the radial directlmdrrow directions remain the same for the source and image.
For the positive parity image, the directions of the arrovesthe same for the image and the source.

8For bright stars, the accuracy of photometry can reach a fiivmagnitudes.
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4.1 Standard light curve

For convenience, we put the lens at the origin, and let theceanove across the line of sight
along thex-axis (see Fig. 4). The impact parameter in units of the Einstdius is labelled as.
For convenience, we define the Einstein radius crossing(imémescale’) as

Vit

e 6 e
—=—, B=—, = —
Vi el * "~ Dg Hrel Dy

te = (4.2)

wherey; is the transverse velocity ange is the relative lens-source proper motion. Substituting
the expression for the Einstein radius into eq. (3.11), wab that

_ Dy Dg) / Ds \¥2/ M \¥2 Vi ~1/2
te~ 19 d""y\/4>< Ds <1_ DS> <8kpc> 0.3M,, <200kmsl) ‘ (4.2)

If the closest approach is achieved a titne tp, then the dimensionless coordinates xaye- (t —
to) /te andys = Up, and the magnification as a function of time is given by

1P +2 _ t-to)®
MO = v T4 rS(t)‘\/“‘2’+< o) 39

Two light curve examples are shown in the right panel of Fifpriup = 0.1 and 0.3.
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Figure 4: lllustration for the lens position and source trajectorfgeimensionless impact parameteugs
(%s,Ys) are the dimensionless source position along the trajeaadss is the distance between the lens and
source.

To model an observed light curve, three parameters arergreseq. (4.3):to, tg, Up. In
practise, we need two additional parametens, the baseline magnitude, arfg a blending pa-
rameter. fs characterises the fraction of light contributed by the éshsource; in crowded stellar
fields, each observed ‘star’ may be a composite of the lertsgdosher unrelated stars within the
seeing disk and the lens if it is luminous ([2, 31]). Blendimid lower the observed magnification
and in generalfs depends on the wavelength, and so each filter requires aasepaparameter.
Unfortunately, we can see from eq. (4.3) that there is ongyminysical parametets) in the model
that relates to the lens properties. depends on the lens mass, distances to the lens and source,
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and the transverse velocitye. Therefore from an observed light curve well fitted by thend&ad
model, one cannot infer the lens distance and mass unigtiedyis the so-called microlensing
degeneracy. However, given a lens mass function and soramhkiiic model of the Milky Way, we
can infer the lens mass statistically.

4.2 Non-standard light curves

The standard model assumes the lensed source is poinbditethe lens and source are single
and all the motions are linear. The majority 90%) of microlensing events are well described by
this simple model. However, about 10% of the light curvesrame-standard (exotic), due to the
breakdown of one (or more) of the assumptions. We brieflyttiese possibilities below (see the
talk by Dominik for more details.) These non-standard n@rsing events allow us to derive extra
constraints, and partially lift the microlensing degewgraBecause of this, they play a role far
greater than their numbers suggest.

(1) The lens may be in a binary or even a multiple system ([38f)e light curves for a binary
or multiple lensing system can be much more diverse (see #tRy offer an exciting way
to discover extrasolar planets ([34, 26, 8, 29, 41)]).

(2) The source is in a binary. In this case, the light curve béla simple, linear superposition
of the two sources (when the rotation can be neglected, 8 [2

(3) The finite size of the lensed star cannot be neglected ddadurs when the impact parameter
Up is comparable to the stellar radius normalised to the Bimsgalius,up ~ r, /re. In this
case, the light curve is significantly modified by the finiterse size effect ([53, 22]). The
finite source size effect is most important for high magnifacaevents.

(4) The standard light curve assumes all the motions ararirtéowever, the source and/or the
lens may be in a binary, furthermore, the Earth rotates ardbe Sun. All these motions
induce accelerations. The effect due to the Earth motionratdhe Sun is usually called
“parallax” (e.g. [21, 48, 39]), while that due to binary nwiiin the source plane is called
“xallarap” (“parallax” spelt backwards, [7, 1]). Parallax “xallarap” events usually have
long timescales. For a typical microlensing event with soadetz ~ 20day, the parallax
effect due to the Earth rotation around the Sun is often @udghle (unless the photometric
accuracy of the light curve is very high).

(5) Microlensing can “repeat”, in particular if the lens isvide binary ([14]) or the source is a
wide binary. In such cases, microlensing may manifest astelbseparated peaks, i.e., as
a “repeating” event. A few percent of microlensing eventsedicted to repeat, consistent
with the observations ([47]).

Notice that several violations may occur at the same timélwih some cases allow the microlens-
ing degeneracy to be completely removed (e.g. [4, 17, 20]).
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4.3 N-point lens gravitational microlensing

It is straightforward to derive the (dimensionless) lengatipn for N-point lenses. We can
first cast eq. (3.8) in vector form and then rearrange

fs=T— %ﬁ (4.4)
The above expression implicitly assumes that the lens feeatttigin, and all the lengths have been
normalised to the Einstein radius corresponding to its rf@ssquivalently, the lens mass has been
assumed to be unity).

Let us consider the general case where we iNypmint lenses, aftc = (X, Yk) with massiVig,
k=1,---,N. We normalise all the lengths with the Einstein radius cgpomding to the total mass,

M = R | My. The generalised lens equation then reads
- = ?— _— = — 4_5
s > rn<|(?_?k)|27 M= (4.5)

wherezﬁ'zlmk = 1. If there is only one lens§; = 1) and the lens is at the origin, then eq. (4.5)
reverts to the single lens equation (4.4).

Two-dimensional vectors and complex humbers are closédyedd Witt (1990) first demon-
strated that the above equation can be cast into a complaxdpdirect substitutions of the vectors
by complex numbers:

N

N
Z— Z My
Is—=272— mn———=Z— =
k; (2-2)(z—2) k;z—zk

(4.6)

wherez = X+ Vi, zx = X+ Yki, andzs = X5+ Ysi (wherei is the imaginary unit).

We can take the conjugate of eq. (4.6) and obtain an exprefwmi@. Substituting this back
into eq. (4.6), we obtain a complex polynomial of degnée- 1. This immediately shows that even
a binary lens equation cannot be solved analytically sinisesi fifth-order polynomial .

The magnification is related to the determinant of the Jacobf the mapping from the source
plane to the lens planéxs,ys) — (X,y). In the complex form, this is ([52]):

0(Xs,Ys) 075 075

= -1 == :1——_—_ 47
H=J7J a(x,y) 0z 0z (47

Notice that the Jacobian can be equal to zero implying a {psaurce will be infinitely magnified.
The image positions satisfyin= 0 form continuousgritical curves, which are mapped intcaus-
ticsin the source plane. Of course, stars are not point-like;, llage finite sizes. The finite source
size of a star smoothes out the singularity. As a result, tagnification remains finite.

For N-point lenses, from the complex lens equation (4.6), we have

0z N my
=2

N My 2
2y X =1 Y ==
0z & (z—n)? ‘k; (z—zk)z‘

(4.8)

7In classical mechanics, the two-body problem can be solmatytically, but not the three-body problem.
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Figure 5: Left panel: Caustics (red curves) and critical curves (green curn@sd binary lens. The lenses
(indicated by two ‘+’ signs) are located at = (0.665,0) andz, = (0.035,0) with massm; = 0.95 and
andm, = 1—my = 0.05 respectively. The green line shows the trajectory foedtsource sizess/rg =
0,0.05,0.3, indicated by the cyan and blue circles and a dot (for a pgmatce). The trajectory starts at
(—2,—1) with a slope of 0.7.Right panel: Corresponding light curves for the three source sizesgalon
the trajectory in the left panel. The time is normalised te Hinstein radius crossing timgs, andt = 0
corresponds to the starting position. Notice that as thecsosize increases, the lensing magnification
amplitude decreases.

It follows that the critical curves are given by

The sum in the above equation must be on a unit circle, andthéan can be cast in a parametric

form
N

M o
A 19

where 0< @ < 2rTis a parameter. The above equation is a complex polynomidégifee of Rl

with respect t@. For each®, there are at most\2distinct solutions. As we vargp continuously,
the solutions trace out at modiZontinuous critical curves (critical curves of differemiigions
may join with each other smoothly). In practise, we can sdiheeequation for on@ value, and
then use the Newton-Raphson method to find the solutionsiier ¥alues ofb.

For a single point lens, if we takg = 0, andm; = 1, we find that the critical curve is the
Einstein ring (zl = 1), which is mapped into a degenerate caustic point at thgno(zs = 0).
However, for binary or multiple lenses, the critical cunsw caustics are much more complex.
The left panel in Fig. 5 illustrates the critical curves amagistics for a binary lens witihn, = 0.95
andmp, = 0.05 and separation of 0.7 (in units of the Einstein radiusHertotal mass). In this case,
there are three separate, continuous critical curves varelmapped into three caustics.

For a point source, the complex polynomial can be easilyesbhwumerically (e.g. using the
zr oot s routine in [40]). However, for a source with finite size, thaséence of singularities

10
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makes the integration time-consuming (see section 6). it panel in Fig. 5 shows the light
curves for three source sizes along the trajectory indichyethe green straight line. As the source
size increases, the lensing magnification amplitude deesgand the number of peaks differ for
different source sizes.

5. Optical depth and event rates

So far we have derived the lens equation and light curve faraténsing by a single star.
In reality, hundreds of millions of stars are monitored, aa@®00 unique microlensing events
are discovered each year. Clearly we need some statistieattities to describe microlensing
experiments. For this, we need two key concepts: opticahdmpd event rate.

5.1 Optical depth

The optical depth (lensing probability) is the probabilityat a given source falls into the
Einstein radius of any lensing star along the line of sighitugthe optical depth can be expressed
as

T= /oDsn(Dd) (rrg?) dDg, (5.1)

which is an integral of the product of the number density ok&s, the lensing cross-sectica (
rre?) and the differential pathdDg).

Alternatively, the optical depth can be viewed as the foactf sky covered by the angular
areas of all the lenses, which yields another expression

.DS

T= %T /0 [n(Dg)4nD4?dDg) (16?) (5.2)
where the term in the [ ] gives the numbers of lenses in a spddesiell with radiu®q to Dq+ dDg,
162 is the angular area covered by a single lens, and the terne idethominator is the total solid
angle over all the sky @#).

If all the lenses have the same magsthenn(Dg) = p(Dgq)/M, mrg? 0 M, and the lens mass
drops out inn(Dg) g2, Therefore the optical depth depends on the total masstyeaising the
line of sight, but not on the mass function.

Let us consider a simple model where the density is constang @he line of sightp(Dg) =
Po- Integrating along the line of sight one finds

2nG ;1 GpodnDs®/3 1 GM(<Dy) V2
32 ° T 22 Ds 22 Ds 2c2’

(5.3)

whereM (< D) is the total mass enclosed within the sphere of raBiyand the circular velocity
is given byV? = GM (< Ds)/Ds.

For the Milky Way,V ~ 200kms™®, 1 ~ 5x 10~’. The low optical depth means millions of
stars have to be monitored to have a realistic yield of mémrsihg events, and thus one needs to
observe dense stellar fields, which in turn means accurateded field photometry is essential
(see the talk by P. Wozniak on difference image analysis).

11
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5.2 Eventrate

The optical depth indicates the probability of a given sheat is within the Einstein radii of
the lensest any given instant. As such, the optical depth is a static concept. We are oblyjiou
interested in knowing the event rate (a dynamic concept), the number of (new) microlensing
events per unit time for a given number of monitored stislgs,

To calculate the event rate, it is easier to imagine the kasemoving in a static stellar source
background. For simplicity, let us assume all the lens moiie the same velocity of;. The new
area swept out by each lens in the time inteidials equal to the product of the diameter of the
Einstein ring and the distance travelledit, dA = 2rg x vdt = 2rEZdt/tE. The probability of a

source becoming a new microlensing event is given by
Ds Ds ZFEZ
dr :/ n(Dg)dAdDy :/ n(Dq) <t—> dtdDy (5.4)
0 0 E

The total number of new eventshigdt, and thus the event rate is given by

d(N,1) Ds 2 5 2N, (Dsdr
M= =N n(D — I dDqg = / —. 55
i */0 (Dq) e TE =k T (5.5)
If, for simplicity, we assume all the Einstein radius crogsiimes are identical, then we have
2N
r~oet (5.6)
m te

We make several remarks about the event rate:

(1) If we takete = 19day (roughly equal to the median of the observed timesgalken we

have L
2N, T AN T e )

M~ =—=—=1200yr '~ — 5.7

T te TR (19day> S

For OGLE-IIl, about 2x 10® stars are monitored (see Udalski’'s contribution), so thal to
number of events lenses we expect per yeBris2400 if T ~ 108, which is a factor of four
of the observed rate (indicating the detection efficiency bmof the order of 30%).

(2) While the optical depth does not depend on the mass imdtie event rate does because of
te(0 MY2) in the denominator of eq. (5.6). The timescale distributian be used to probe
the kinematics and mass function of lenses in the Milky Way.

(3) The lenses and sources have velocity distributions poungt account for them when realistic
event rates are needed. Furthermore, the source distanokriswn, and so in general we
need to average over the source distance (for example aatms, see [27, 30]).

6. Summary

In this introduction, we derived the lens equation, andiokththe image positions and magni-
fications for a point lens. We also discussed the statistiesures for microlensing experiments,
and estimated the order of magnitudes for various quasitit interested reader should now be

12
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armed with a basic knowledge of microlensing and be prepareshd the review articles and start
to do research on gravitational microlensing (or even trgaiwe the problem set below).

Since the discovery of first microlensing events in the eafl90’s, enormous achievements
have been made in the field. However, challenges and opjiteiremain.

(1)

)

®3)

(4)

Undoubtedly the highlight of gravitational microlengiin the last few years has been the
discovery of extrasolar planets ([11, 50, 5, 23, 10]). Miensing has much to offer in this
area since it probes a different part of the parameter sgackprovides an important test
of the core accretion theory of planet formation. Severalt@/Rapers ([24, 9, 16, 6]) set
out strategies with ambitious milestones in the next fiftgears, from improvement of the
current survey plus followup mode of discovery (with an andébed algorithm to identify
the “anomalies” in real-time) in the near term, to a widedfisbtwork from the ground in
the next 5-10 years, and eventually a telescope in space inetkt 10-15 years. Combined
with the stellar transit missioKepler (to be launched in 2009), microlensing will be able to
provide the complete census of Earth-mass (and lower) dangirtually all the separations.

Technically, it is still challenging to calculate the ligbtirves for sources with finite size
since we need to integrate over the singularities of causfltis is particularly important
for the discovery of extrasolar planets when a source tsatfs small caustics induced by
the planet(s). The problem becomes even worse with thewdisgof multiple planets ([20])
due to the higher complexity of the lens equation and thees®d number of parameters:
how do we search the high dimensional parameter space efficle

Are there hidden multiple planetary light curves in the bate that are not yet identified
due to their complex shapes?

Microlensing surveys over the last fifteen years haveliacdated tens of TB of data. This
tremendous database has not been exploited to its full tied.

For example, the surveys yielded many high-quality colmagnitude diagrams of stellar
popular populations, proper motions of millions of starg] in the future the optical depth
maps. All these can be used to provide important and indegemqmtobes of the structure of
the Milky Way.

Despite promising earlier attempts (e.g. [36]; [43, 44]),[85]), microlensing has under-
delivered in this area. For example, while we have discaleeveral thousands of mi-
crolensing events over the last 15 years, only a small tradiias been used for statistical
analyses of optical depths. We need to remedy the situatgantly.

High-magnification events are great targets-of-oppoty for high signal-to-noise ratio spec-
troscopic observations to study stellar atmospheres figelstars. Attempts so far already
yielded interesting results (e.g. [32, 49, 12]). We needkfilare this more systematically.

For mathematically-gifted students (or mathematijagravitational microlensing provides
an interesting problem. While the binary lens equation isonger analytical, there is, nev-
ertheless, an analytical relation on the minimum magnibodior five-image configurations
([54, 46]). There is also a degeneracy found by Dominik (}98&tween close and wide
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separation binaries, which was later explored in much greafgtail by An (2005). Are there
any other symmetries, perhaps even for multiple lens syg2em

The number of critical curves fdd-point lenses cannot exceetll Zsee section 4.3). The
upper bound of the number of images fé+point lenses also has linear dependenceéNon
(see Problem 1). Are these two related in some geometric way?
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Problems

1. a) There aré\-point lenses in a lens plane. For a source very far away filbthealenses,
how many images are there? What are their parities?

b) What is the achievable maximum number of imagesNfgoint lenses and an arbitrary
source position?

2. A uniform source star is perfectly aligned with an obsemed a point lens. Its physical
radius normalised to the Einstein radiupjs

a) What is the resulting image configuration?
b) What is the magpnification for the finite source?

c) Estimate the maximum magnification that can be achievesl$ource star in the Galac-
tic bulge.

d) Derive the expression for magnification when the sourewigperfectly aligned with
the lens.

3. Show that the total magnification for a point lens is alwlayger than one. How can this be
reconciled with energy conservation? (see Janusizy& Paczynski 1996, AcA, 46, 361).

4. The density distribution in the plane of the Galactic diak be modelled as an exponential

P(R) = poexp(—(R—Ro)/Ra),

wherepyg is the density in the solar neighbourhod, is the distance to the Galactic centre,
Ry is the disk scale length, amglis the distance from the Galactic centre.

a) Find the optical depth for a source at the Galactic centiR 0).
b) If pg= 0.1M. pc 3, Ry = 8 kpc,Ry = 3 kpc, what is the value af?

5. Consider a simple model: all lensing objects have the saasaM, the same three-dimensional
velocity V, and their velocity vector directions have an isotropidriistion. The source
located at the distance is stationary, and the number geoislensing objects is uniform
between the observer and the source. Derive the timescabalptity distribution.

Now assume the lenses follow a Maxwellian distribution watlone-dimensional velocity
dispersiono. Derive the timescale probability distribution. Show thdbllows a power-law
behaviour for both very short and very long timescales.

6. A distance source is lensed by a point deflector with nfvis3 he light signals emitted by
the source will be received by an observer at different tifoeshe two images due to the
difference in the trajectory and gravitational potentigberienced. The time delay is of the
order ofrscn/C, Whererge, is the Schwarzschild radius. Is this observable fdd &= 1M,
lens?

7. A background star stationary at the origin is microlenisg@ lens moving from-oo to co.
Show that the centre of light of the two images traces out lgrsel
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8. Show that

a) In the complex notation, the Jacobian is given by eq. (4.8)

b) For any positive-parity image produced Wypoint lenses, the magnification is always
larger than or equal to one.

¢) Find the number and positions of images where their magutifins are identical to
unity for a binary lens.

d) What is the maximum number images with unity magnificafmriN-point lenses?

17
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Solutions

1. a) There ardN + 1 images, one bright image close to the source, Mrfdinter images
with one image close to each lens. The image close to theesbacpositive parity, all
the others have negative parities.

b) 5(N—1) for N > 2. This is a difficult problem. See Rhie S. H. 2003, arXiviastr

ph/0305166; Khavinson, D. and Neumann G. 2006, Proceedlighe American
Mathematical Society, 134, 1077 (arXivimath/04011088).

2. a) Theimage configuration is an annulus. The inner radigwén by the, = (\/p2+ 4+
p.)/2 while the outer radius is given by = (\/p2+4—p,)/2.
b) The area covered by the imageAis- n(r% — rf) = 11p,\/ P2 + 4. Thus the magnifica-
tion isA/(npf) = +/p2+4/p.. In particular, whemp, — 0, A— 2/p,.
¢) For a solar mass lens in the Galactic cenide-£ 8 AU), the maximum Einstein radius
is achieved whely = Ds/2, rg = 6.0 x 10'3cm. The faintest and smallest stars we

can see in the bulge have radii similar to a solar-type stag,R., = 7 x 101°cm,p* =
re/re =12x 103. The maximum magnification is of the order=f2/p, ~ 1700.

d) See Witt & Mao 1994, ApJ, 430, 505

3. Clearlyu > 1. See Jaroshgki & Paczynski 1996, AcA, 46, 361 for discussions about the
energy conservation.

4. The optical depth is given by

Ds p(Dd) 4niGM DyDgys

v @ b, 9 (6.1)

Ds
T= / n(Dg) (mrg?) dDg =
0 0
For microlensing in the Galactic planBgs = R,Ds = Ry, Dq = Ry — R, and thus we have

Ro ok, 4TG Dy(Ro — Dy)
r:/o po €P¢/Rd > d R 9 4Dg (6.2)

Performing the above integral, we find that

4GT1poR
= 727’2’0% y3[2+y+&(~2+y)], y=Ro/Rg (6.3)

For the given numbers, we find®pyR3/c? = 3.86x 1076, andy = Ry/Ry = 2.67, we have

T~29x10°. (6.4)

5. For step by step derivations, see Ma & Pdrsky, 1996, ApJ, 473, 57. Notice that the
observed event timescale distribution does not follow thavgr-laws due to detection effi-
ciency.

6. The time delay is of the order of tens of micro-seconds feolar mass lens, and is very
difficult to observe.
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7. See Hog et al. (1995, A&A, 294, 287), Miyamoto & Yoshi (1999, 110, 1427), Walker
(1995, ApJ, 453, 37)

8. a) Using complex notation, we haxe= 3(z+2),y = 5 (z— 2. Thus

b)

0z dzsdx+dzsdy (025 dzs>_

9z dxdz  dy oz x dy

Similarly

0zs 070X 0zsay (025 0zs> _<0x5 dys 0xs 0Ys

9z 9x dzJr ay 9z ox + ay ox ox 0y

)(6)

However, from the lens equation (4.@)z/0z = 1, and thus comparing the real and

imaginary parts in eg. (6.5), we have

o 0y 0% _ o
ox dy T 9y ox’

Substituting the second expression into eq. (6.6), we find

% _1(0% 0% o
0z ox oy ox’

Combined with

0z

0zs 1 (0%  0Yys\ _
2 (5t o)~

we find
Oxs . 1[0z 0z)\ dys 0z 025\ dys 075
0x_1+2<02+0z_>’0y_1 9z " 9z) ox 2\ oz
Substituting the above equations into the Jacobian

0Xs dys 0Ys (9X5

we recover the required expression.

Since

N
e

(6.7)

(6.8)

(6.9)

0z
9z
(6.10)

(6.11)

(6.12)

For a positive parity image, we must have-1 > 0, it follows thaty =J~1 > 1. The

magnification is unity when the sum is equal to zero.

Without losing generality, we put the lenses on xkexis, at(zp,0) and(—zo,

0), with

massesm andmp (Mg > ), and we havamy +np = 1, z5 > 0. From part b), the

condition for unity magnification is

my mp

Tr o TwE
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This simplifies into a quadratic equation
Z +2(m — mp)zz+ % = 0.

Clearly we have two solutions

zZ._=1 ((mz—ml)ii 1—(m1—mz)2>.

These two are, as expected, symmetric with respect tg-&hes.

d) 2N —1).
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(6.15)



