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Modelling microlensing events is a complex job extending far beyond the optimization of a func-
tion of adopted model parameters by means of standard techniques. Non-linearity of the underly-
ing models leads to parameter ambiguities and degeneracies, and already the most simple case of
a single point-like observed source star and a single point-mass lens as well as a static observer is
substantially less trivial than one might think, while a proper treatment of the various microlensing
anomalies requires tailored approaches to ensure that all regions in a high-dimensional intricate
model parameter space are identified that could provide a suitable description of the nature of
the observed event. Catastrophic behaviour leading to caustics results in the need to optimize
functions that are not smooth, which causes a significant problem to standard algorithms. As if
this were not enough, the photometric measurements frequently show complex statistics, varying
amongst different sites, and involving outliers, an increased abundance of larger deviations as
compared to a Gaussian distribution, as well as effects depending on the observing conditions.
It requires advanced statistical methods and numerical strategies to account for the encountered
difficulties. In order to be able to identify deviations from an ordinary light curve of ongoing
microlensing events, a real-time modelling is required, and for realizing an optimal monitor-
ing strategy, accurate predictions of model parameters are a valuable ingredient. The bias of
maximum-likelihood estimates however frequently leads to substantial mispredictions, whereas
maximum a-posteriori estimates with an appropriate prior are doing a better job. Multivariate pa-
rameter probability densities of the model parameters for observed events contain all the relevant
information from which any interval estimates can be derived. Moreover, by means of Bayes’
theorem, these can be converted to yield the probabilistic distributions of any physical proper-
ties with the assumption of respective priors. The identification of characteristic features in the
observed light curve provides the clue to a successful modelling, and tailored artificial neural net-
works might replace human intuition, eventually leading to fully-automated real-time modelling

systems.
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Figure 1: The relations between reality, observations, and models.

1. Introduction

Covering every aspect of modelling microlensing events would have required a 2-day work-
shop on its own (at least), and the confinement of this topic to a single lecture therefore calls for
severe compromises. Presenting a little bit of everything would have meant to discuss nothing to
an extent that allows to gain a satisfactorily level of understanding. Therefore, the numerical tech-
niques applied to evaluate the model function, to search parameter space, and finally to converge
at proper estimates of model parameters, are deliberately skipped. Moreover, optimal parametriza-
tions of all the diverse microlensing anomalies with their manifold degeneracies and ambiguities
have also escaped consideration, and only references are being provided. Instead, the lecture con-
centrates on the most fundamental concepts, illustrated by some examples, and in particular stresses
various points that are typically not found in the literature, or are even frequently overlooked, de-
spite the fact that many of these are essential for drawing the proper conclusions from the acquired
data.

With the vast amount of data being collected right now, and the data acquisition rate increasing
over the next few years, efforts need to be invested into the implementation of a comprehensive
automated modelling strategy, whereas with thousands of events per year, an analysis of the data
based on substantial human intervention is not feasible.

2. Data and modelling

2.1 Reality, observations, and models

The limitations of human mind do not allow us to determine the reality of the world. To the best
of our abilities, we can only try to fit it into our imagination. It should therefore be distinguished
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what the true nature of the objects under study is, what is being revealed about them, and how we
describe them. Any observations are only a projection of reality expressed in measurable features.

Modelling now means to try to match the measurements with a set of model parameters. A
model is deemed successful, if it is compatible with the observations. While models are never
unique, some of them may be equivalent, but in general there can be non-equivalent competing
models. The chosen model parameters are a representation of what we imagine to be properties
of real-world objects, but our picture will always remain incomplete, given that the observations
themselves are only a projection. Nevertheless, the general aim of science is to move towards
a larger degree of completion, while reducing the number of parameters, thereby increasing the
predictability of the theory.

2.2 Measurements and their uncertainties
i(k) ; Fi(k), Gék)> , consisting of

, and their uncertainties Gék)

Microlensing observations provide us with a set of data points <t

(k) (k) for each of the

the times of observation t; ", the measured fluxes F,
observing sites and filters, denoted by the multi-index k, with ny measurements, respectively.
Drawing the right conclusions from small deviations in the light curves requires a proper un-
derstanding of the distribution of the measurement uncertainties [[]—[].! It is a quite common
assumption that the reported error bars can be interpreted as the standard deviation of a Gaussian

distribution

2
F() = — exp<—%> @.1)

R Sy VA (2.2)

are distributed as f(xi(k)).

In order to test this hypothesis, let us consider a recent event from the OGLE (Optical Gravita-
tional Lensing Experiment) sample, which comprises calibrated data on thousands of events [[] Bll,
namely OGLE-2007-BLG-185, of which the data together with a model light curve are shown in
Fig. P. Rather than the measured fluxes, the OGLE team report the corresponding magnitudes m;
along with their uncertainties Op,.

One of the popular standard procedures is to perform a Kolmogorov-Smirnow test of the resid-
uals against a Gaussian distribution. Let us get around any dependencies on the magnitude, and
just consider the data at event baseline, where the baseline magnitude My,ase Simply follows as the
weighted average

m % m i : 2.3)
base — 5 5 .
5 0m " 5 O
over the n acquired data points, so that the residuals read
Mpase — M
Xj = —e 1 2.4)
Om

Deviations that by far exceed the measurement uncertainties can however be discussed without detailed knowledge
of the measurement statistics, given that the principal behaviour is obvious.
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Figure 2: Data collected by the OGLE (Optical Gravitational Lensing Experiment) collaboration on the
event OGLE-2007-BLG-185, illustrating the scatter around the model light curve [E]. — with kind permission
from Andrzej Udalski for the OGLE team.

of Ka
20% | 1.07
15% | 1.14
10% | 1.22
5% | 1.36
2% | 1.52

Table 1: Critical values Ky of the Kolmogorow-Smirnow test statistic that correspond to selected signifi-
cance levels a.

With the distribution functions

1 n
Pn(x) = = 3 O(x—xi) (2.5)
i=1
for the residuals X, and
X
O(x) = / F(x') dx’ 2.6)

for the Gaussian distribution f(X), one finds the test statistic
K = v/n sup [y (x) — D(x)] 2.7
X

which depends on the maximal absolute deviation and the number of data points. The stochastic
distribution of the Kolmogorow-Smirnow test statistic K then defines a critical value K4 for any
chosen significance level a, some of which are displayed in Table [l| for selected a.

If one adopts the reported error bars for OGLE-2007-BLG-185 for the residuals, a pretty good
mismatch of their distribution with a Gaussian is found, as illustrated in Fig. B on the upper left.
Most prominently, the true scatter turns out to be substantially larger than the reported uncertainties
indicate. Therefore, one needs to account for more sophisticated error bar models.



Modelling microlensing events Martin Dominik

OGLE-2007-BLG-185 OGLE—-2007-BLG—-185 OGLE-2007-BLG-185
— T — T — T

1 1

[ m, = 18.178 ag ] [ m, = 18.178 mag 7 [ m,,, = 18.181 flux ]

0.8 - n - ass e 08« =169 e 08, =160 E

L ] [ n = 854 ] [ n = 854 ]

~ 0.6 - - ~ 0.8 [~ - ~ 06 -1
- 1 & 1 & ]
® 04 - - S 0.4 - - ® 0.4 - -
0.2 S Gaussian _f 0.2 S_ Gaussian _f 0.2 S_ Gaussian _:

L K = 4.123 ] L K =2032 ] L K = 1347 ]

0 PR N R TR TR N T 0 C PR N R TR TR N T 0 L IR [ S S T N
-2 0 2 -2 0 2 -2 0 2
X X X

OGLE-2007-BLG-185
— T

1 1
[ my.. = 18.181 ] [ m. = 18.182 flux ]
0.8« =120 = 08 ¢ =151 ]
[ o, = 0.030 F ] [ n =854 ]
~06F, -84 E —~ 06 -
X r ] X r :
® 04 | - ® 04 F -
o ] o Student’s t ]
0.2 :_ Gaussian _: 0.2 :_ v= 9.65 _:
r K = 1.276 ] r K = 0858 1
0 C L PR B 0 L " 1 PR B
-2 0 2 -2 0 2
b X

Figure3: Comparison between the distribution functions ®p(X) of the data residuals X; of the OGLE baseline
measurements on event OGLE-2007-BLG-185 and ®(x) of a Gaussian distribution f(x) or ®,(x) of Stu-
dent’s t-distribution f,(X) to the parameter v. While n denotes the number of considered data points, Mpyase
is the estimated baseline magnitude, K stands for a uniform scaling factor, and 0y refers to a systematic error
added in quadrature, with the error bar model defined by Eq. (. The quoted K is the Kolmogorow-
Smirnow test statistic (Eq. (E)), providing a measure of the disagreement between the proposed and actual
distributions.

In a first step to correct for the discrepancy, let us scale the error bars with a factor K, so that
O = K Om . (2.8)

A maximum-likelihood estimate (see Sect. B.2) yields k = 1.69, and the corresponding distribution
function is shown in the upper middle panel of Fig. B| Still, we are being left with an asymmetry of
the deviations. As an alternative, let us look into the statistics of the observed fluxes F; rather than

the magnitudes m;, where

F=Fer 10725 | (2.9)

with the pair (Fef, Mer) determining the calibration, and the measurement uncertainties being

In10
OF = fl:,am. (2.10)
As Fig. B shows in the upper right panel, the discrepancies now look smaller, reflected in the more
favourable K, and the asymmetry appears to have gone. However, the Kolmogorow-Smirnow test

leads to acceptance only at significance levels of 5 % and below. If one adds a systematic error in

ot = \/(KOR)*+ 02, 2.11)

quadrature to the uncertainties, i.e.
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Figure 4: Student’s t-distribution f, (x) for all natural v. While f;(x) with its wide tail equals the Cauchy-
distribution, fy,(X) approaches a Gaussian distribution for v — co.

a maximume-likelihood estimate gives 0y ~ 0.03 Ry, while K = 1.29. A further improvement on
K would however still lead to rejection at 10 % significance level, and the respective plot, shown in
the lower left panel of Fig. B suggests that there are systematically wider tails.

An alternative generic distribution accounting for wider tails takes the shape of Student’s t-

distribution
v+1
r( V41 ) X2 -
v (X) T I_( ; ) < v ) 3 ( )

shown in Fig. |, which depends on an order parameter v. While f; () is identical to a Cauchy distri-
bution, f,(X) approaches a Gaussian f(X) for v — co. The natural origin of Student’s t-distribution
is the estimation of the variance from a finite number of measurements rather than an infinite one.
As shown in the lower right panel of Fig. B, the adoption of Student’s t-distribution f, () with a free
parameter V estimated from the sample of data leads to a far better match even without assuming
a systematic error as compared to a Gaussian distribution f(x) with this further scaling freedom,
while both comprise the same number of parameters.

In conclusion, one should be careful about the assumption of Gaussianity. While some rescal-
ing might seem to be provide a rough match, one does not overcome the issue that larger deviations
appear to occur more frequently in the data than a Gaussian distribution would suggest.

3. Estimating model parameters

3.1 Properties of estimators

Rather than by the large number of data itself, one would like to describe the observations by
means of a much smaller number of model parameters. This requires to adopt a suitable model
and to find parameters that match the data, while one should abstain from trying to match data to
an adopted favourite model. Amongst an infinite number of values for any continuous model pa-
rameter, which one should be quoted? Despite the fact that a "most-probable value" is sometimes
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referred to, such does not exist. For a continuous variable, the probability for each specific realiza-
tion is exactly the same, namely zero, while probabilities larger than zero can only be attached to
parameter ranges of non-vanishing extent.

Ideally, an estimator (p) of the parameter vector p should have the following properties: (1) as
the number of data points approaches infinity, it should converge in probability (or better: almost
surely) to the true value; (2) its expectation value should equate the true value, & ({p)) = p, at least
asymptotically, i.e. the estimator should be unbiased (or asymptotically unbiased); (3) the variance
on (p), i.e. £((p)2) — [£((p))]* should be as small as possible. In fact, rather than being able to
optimize on all of the desired properties, in general a compromise between these is required.

3.2 Maximum-likelihood estimate

A popular and very convenient choice is the maximum-likelihood (ML) estimator (p),,; , for
which the so-called likelihood function .’ (data; p) assumes a maximum. The likelihood function
is given by the product of the probability densities for the distribution of the measured data around
the corresponding model values at the time of measurement with the measurement uncertainties,
(k), Fi(k) , aé")) , one finds

so that for the microlensing observations (ti

(k)

s N F(k) t-(k); _ F(k)
g(ti(k)’lzi(k)’o.ék);p) _ |—| |—! f ( ( i p) i ) (3.1)
k=1i= GF,

Some care is required with regard to the interpretation of the likelihood function .#(data;p). In
particular, it is not a probability density in model parameter space, i.e. amongst the realizations of
the parameter vector p.

Asymptotically, and only asymptotically, the maximum-likelihood estimator (p),,; converges
almost surely to the true value, becomes unbiased, and even approaches a Gaussian distribution.
A disadvantage is that (p),, is biased, which can be seen as follows. If one reparametrizes the
parameter vector p with a bijective function @ (p), every realization of the parameters carries its
likelihood along, i.e. the likelihood at the function value is equal to that of the original value

Z(py|data;  (po)] = Zp(data; po), (3.2)

which trivially results from the definition of the likelihood function, given that the model value
of the observable remains unchanged. As a consequence, the ML-estimate of a function of the
parameter vector is equal to the function value of its ML-estimate,

(@(P))vr. = ¢ ({P)ar) (3.3)

Since such a relation holds for the expectation value only as long as ¢(p) is a linear function of
p, one finds that &({p)y; ) # P in general. The most advantageous property of the maximum-
likelihood estimator (p),, is that there is no unbiased estimator with a lower variance [f].

In the case of Gaussian error bars, the maximization of the likelihood function .Z’(data;p)
becomes equivalent to minimizing the sum of squared residuals

s (ERER.py g0
Xz(ti(k)7|:i(k)7a|(:|k);p) _ z Z ( (tsp)—F ’ (3.4)
k=1i=1
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given that
—21n.%(data; p) = x*(data;p) + const. (3.5)

If the model function is linear in the parameters p, x? is parabolic and has a unique minimum.
However, this does not hold in general, and in fact, the parameters to describe microlensing events
make X2 highly non-linear in these. As a consequence, there can be lots of minima. Unfortunately,
there is no algorithm known that is able to find all local minima or the global minimum of a
continuous function. This means that one needs to adopt a tailored approach for identifying all
regions of parameter space that could host a minimum.

3.3 Goodness-of-fit

Once a minimum of X2 with respect to the model parameters is found, one would like to
assess whether the corresponding P, represents a model that is in "agreement" with the data.
This "agreement"” can be quantified by means of deriving information based on the distribution of
test statistics. One such statistic is x? itself, which happens to be "x2-distributed" with the number
of "degrees of freedom" N = n— A as a parameter, where n denotes the number of data points and
A the number of ML-estimated parameters, i.e. A is usually equal to the dimension of the vector
Pmin. The evaluation of critical values is simplified by the fact that

lim /2% = A/ (VIN=T,1), (3.6)

where .4 (U, 0?) denotes a normal distribution with mean 1 and variance 2, so that
P(X*> x2,) ~ 1 — CD< 2x2. — V2N - 1) (N >30). (3.7

This means that the probability for x? to exceed the obtained minimal value Xém can be extracted
from the distribution function ®(x) of a unit Gaussian, where the deviation in units of the Gaussian
standard deviation O reads

OGauss/ T = \/2 X2 — V2N — 1. (3.8)

Following the standard procedure of testing a hypothesis, a model is then rejected at a significance
level a, if P(x% > Xiin) < a. In contrast, x>/N is not an appropriate measure for the quality of a
model-parameter fit.

In principle, one may choose any test statistic for assessing the goodness-of-fit, where for each
the probabilistic distribution and critical values need to be worked out. This means in particular that
there is no unique statistical test. One needs to be aware of the fact that actually none of these tests
can provide evidence for a model being "correct”, they can only fail to provide evidence that leads
to its rejection, and their power for rejecting models can be substantially different. In particular, a
X>-test only considers the absolute amount of the deviations, but not their signs, whereas a run test
is just working the other way round, by only considering the sign, but neglecting the size.

3.4 Interval estimation

Having obtained a maximum-likelihood estimate, we are just given a single point P, in
parameter space, but as pointed out before, the probability that it reflects the ’true’ value is zero.
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Therefore, rather than just a point estimate, one needs to determine parameter confidence regions
that refer to a defined probability. All the required information is contained in the multivariate
parameter probability density, and in order to reduce the amount of information, one is free to
choose arbitrary confidence regions of any position, size, and shape. There is just one essential
requirement, namely that any quoted region has to contain the quoted probability. Actually, the
literature is full of examples where this necessary condition has been violated.?

For linear models and Gaussian error bars, we are in a lucky situation that makes life quite
easy. First, the parameter probability density becomes a multivariate Gaussian centered at the best-
fitting value, i.e. the maximum-likelihood estimate. Second, depending on the dimension, contours
of x? define symmetric intervals, ellipses, ellipsoids, hyperellipsoids, around pp;,. Third, and
finally,

Ax* = x*(data, p) — x*(data, Ppin) (3.9)
is x2-distributed with A degrees of freedom, and any projection of Ax? onto a parameter sub-space
is also x2-distributed with a correspondingly lower number of degrees of freedom. Therefore, the
enclosed probability is easily calculated by means of the x2-distribution. As long as an applied
non-linear model can be locally transformed into a linear model, one can still profit from these
properties. However, such a procedure cannot succeed once it becomes necessary to consider more
than a single local minimum. In particular, Ax? is no longer x2-distributed over a region covering
more than one minimum, nor is there a linear transformation that could achieve this.

In the more general case of non-linear models or non-Gaussian error bars, one is still free to
adopt confidence regions that are defined by X2 contours, given that one can choose any region, but
one needs to properly evaluate the enclosed probability, which can be done in general by means
of Monte-Carlo simulations [§]. Using relations between X2 and the enclosed probabilities that
only hold for Gaussian error bars and (locally) linear models will not yield the correct result, and
moreover may yield results that are not even close to the correct one.

3.5 Physical properties

Just from the model parameters, it is not always possible to infer directly the properties of the
underlying physical system that one is primarily interested in. However, a probability density for
the latter given the obtained model parameters can be derived by means of Bayes’ theorem, which
means to convolve the likelihood .Z’(p|() for an observed event described by model parameters p
to arise from a configuration having property / with the prior probability density fy () Bl i.e.

2w W)
W)= T2 i)ty (w) g 10

is the probability density for the property ¢ given the model parameters p and the prior fy ().

A deeply non-trivial point in Bayes’ theorem for continuous variables is on where probability
densities and where likelihood functions are referred to.

A worked example for determining the probabilistic distribution of physical properties formed
part of the analysis of the OGLE-2005-BLG-390 event [[[(], with its cool rocky/icy planet, where
probability densities for the lens mass, lens distance, orbital radius, and orbital period have been
derived. These are shown in Fig. fj.

2Please allow me to abstain from listing respective references.
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Figure5: Probability densities for the masses of the planet detected in event OGLE-2005-BLG-390 [E] and
its host star, their distance from the observer, the orbital radius (assuming a circular orbit), and the orbital
period. These have been obtained by applying Bayes’ theorem and assuming mass and velocity distributions
of Galactic bulge and disk stars and well as a stellar and sub-stellar mass function [E].

4. Parametrizing gravitational microlensing events

4.1 Observed flux and source star magnification

The phenomenon of gravitational microlensing leads to a characteristic magnification A(t; p)
as a function of time t and the model parameters P that describe the lens-observer-source geometry,
the lens properties, and the source brightness profile. The observed flux F K (t;p) however, further-
more is a linear function of the intrinsic flux of the observed source star Fs(k), which is magnified,

(k), where

and a background flux F
FO(t:p) = FOALP) +FY. (4.1)
This allows us to isolate these two parameters from the remaining parameter space, so that

p=(FM, R p), 4.2)

and for every value of f), minimizing x> means that the most-likely source and background fluxes
can be expressed in closed analytical form

Ati)F At i Alti))? ] At Alti)F
SRS s & R R e

~T At < 1 A(ti) . m At < 1 A(ti) 2 )
2 o Zg—%— Zg—% 2 o Zg—,gl— Zg—gi

10
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while the non-linear minimization process can be restricted to

2 k) () s Nk A(ti(k)§p) _Ai(k) 2
X7, F70g 50 =5 —w | 4.4)
k=1i=1 GA
expressed by means of the magnification rather than the flux, where
(k) (k)
F"V —F
Ai(k) — % 4.5)
Fs
and "
K _ %R
Op = ’F(k)’ . 4.6)
S

4.2 Ordinary microlensing events

The most simple case, namely ordinary microlensing light curves, which means that a point-
like source star is magnified due to the gravitational bending of its light by an intervening single
point-lens star, is far less boring and trivial than commonly thought.

The unique characteristic scale of gravitational microlensing is given by the angular Einstein

radius [|L 1]
4GM Th s
=3 — — 4.7
B =/ 2 TAU’ 4.7)

where M denotes the mass of the foreground lens star, G is the universal gravitational constant, C is
the vacuum speed of light, and
ms=1AU (D_'-Dg") (4.8)

stands for the relative source-lens parallax, with Dy and Dg being the lens distance or source
distance, respectively.

With the angular separation between lens and source star being U B, the magnification is an
analytic function of U, namely

u? 42
uvuZ+4-

For uniform proper motion, the dimensionless separation U can be expressed by means of three

A[U(t;UO,to,tE)] = (49)

quantities that form the parameter vector p = (Uo, to,tg), so that

2
U(t;Uo,to,te) = 4 /U2 + (?) : (4.10)
where Ug B is the smallest angular separation, encountered at epoch ty, while the source moves
by an angular Einstein radius relative to the lens within the time-scale tg = 6g /U []. Whereas
Up and ty do not carry any information about the relevant physical properties that determine the
magnification, namely the relative parallax Tf g, the relative proper motion U, and the lens mass
M, all these are convolved into the event time-scale tg. As illustrated in Fig. [, ordinary light
curves: (1) are symmetric with respect to a peak at epoch ty, (2) reach a peak flux there, (3)

11
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Figure 6: Source trajectories of different impact parameters Ug € {0.1,0.3,0.5,0.7,0.9, 1.1} (left) and the
corresponding magnitude shift Am = 2.5 IgA as a function of (t —ty)/tg (right), where the magnification
Alu(t;to,tg,up)] is given by Eq. (@), to is the peak epoch, and tg = 6g/ 1 is the event time-scale. The source
trajectory relative to the lens, assuming uniform relative proper motion U, is described by u(t;to,tg,Uo),
as given by Eq. (), with U6y being the angular separation between lens L and source S. The angular
Einstein radius 6g, defined by Eq. (@), marks the unique characteristic scale of gravitational microlensing,
indicated as a circle around the lens star in the left panel.

approach a baseline flux for times far away from the peak, and (4) show characteristic inflection
points. However, the parameter g is the only one that directly relates to the characteristic features
of the light curve, while all the others are not a proper reflection. This is not at all favourable for
modelling, and instead being able to essentially read off the model parameters from the collected
data would ease life a lot.

4.3 Features and asymptotics

Fortunately, the observed flux can be rewritten by means of a different parametrization. With

the baseline flux £ and the peak flux Fo(k) given by

base
R = FY Y,
R = Fo Alu(to: p)] +Fs°, (4.11)
the maximal flux difference AF ) reads
AR =N RN —FM (AU —1]. (4.12)
Not only in Fs(k) and FBEkI, but also in Fb(:;)e and AF (kI, the observed flux F (t;p) is a linear function,

namely

Alu(t:p)] -1 k
K (t-n) — (k) DEA M) T 2 (k)
F (t’ p) AF A(U()) 1 + Fbase’

so that these parameters can be separated by a linear fit as well. One can then define a half-

(4.13)

maximum time t; 5, so that at time to £1t; , half of the flux offset is encountered, i.e.

base —

F®(to t)/2:Uo, to,tE) — FY = %AF("). (4.14)
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Figure 7: Light curves for the same impact parameters as adopted for Fig. E, but now the relative flux
difference (F — Fyase) /AF with respect to its peak is plotted as a function of (t —1to)/t; />, where the half-
maximum time-scale t;  is defined by Eq. ().

This means that the epochs ty + t; /, correspond to a magnification

A(Uo) +1 ‘

Aj/2(Uo) = Afu(to £ty 25Uo,t0,te)] = (4.15)

With u; ;, = U(ty &t} »; U, to, t) and by means of Eq. #@.10), one finds

t1/2 :tE,/u%/z—u(z), (416)

u%/Z t—1 2
U(t;UO,to,tl/z):Uo 1+ — = < > . 4.17)

Uy t]/2

which leads to

If one now plots the offset flux F(t;p) — F, ®) 'in units of the difference AF %) between peak and

base
baseline, and scales t —ty with t; , rather than tg, as illustrated in Fig. fl, one finds that light curves
with differrent Uy nearly coincide around their peaks.

Moreover, if one looks more closely at the behaviour in the limits of small or large separations
[[[3]], one finds that the wing of the light curve also shows a convergence towards a single char-
acteristic curve, albeit differrent ones for small or large Ug, as can be seen in Fig. [], indicating a
degeneracy in this parameter for these limits. This results from the fact that for u < 1 and foru > 1,
the magnification can reasonably well be approximated by a more simple expression, which leads
in both cases to the half-peak time-scale t; , becoming proportional to tg, however with different
proportionality factors. With the relative excess magnification [A(u) — 1]/[A(up) — 1] approaching
Up/u for u < 1, and (ugp/u)* for u>> 1, the observed flux becomes independent of Uy in these two
limits, but the functional dependence on (t —to)/t, , differs, which explains convergences to two
different curves. The detailed asymptotic behaviour of the relevant quantities has been summarized
in Table [
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uk1 u>1

Au) ~ u! 1420
1 2
Ao ~ — 14 -3
Ug Uy
1 1
A ~ — 14+ —
12 2Ug * ug
Up/n ~ ZU() %Uo

/

o ~ V3Uote (V2—T1)uptg
Alu(t; p)] — 1 N Uo ( Uo )4
A(up) — 1 B u(t;p) u(t;p)

AF K AF K

12

FOGAF®,RY to,ty ) — FY

base

1+(vV2-1) (tt_—to>2r

172

2
t—t
143 ( 0)
tin
Table 2: Asymptotic behaviour of the observed flux F() in the limits u < 1 or u>> 1, and its matching
parametrization.

5. Predicting microlensing light curves

One might think that 3 parameters (like U, tp, and tg) can be obtained straightforwardly by
means of regression from as few as 4 data points, but this does not work if the observable does
not significantly change with a variation of the considered parameter. Reviewing the asymptotics
for u < 1 and u > 1 from a different perspective leads to the conclusion that there is no interpre-
dictability between the peak and wing regions of the observed light curve, and in particular, early
observations give poor estimates of the peak magnification, as well as on the time-scale tg. Let us
look at a practical example, and see how the estimation of the peak magnification changes between
the first issue of an alert by OGLE and the final value obtained after the event has been observed
completely.

For 386 events alerted by OGLE between 1 Apr 2007 and 15 Oct 2007 that were over on
14 Nov 2007, with suspected anomalies removed from sample, Fig. § shows the difference in the
prediction of the peak magnitude shift (Am)y = 2.51gAp between the initial and the final value. If
one just considers differences by two magnitudes or less (i.e. about a factor 6 in Ay), it looks like
the shifts for the majority of events are less than 0.3, i.e. Ag is mispredicted by less than 30 %,
while there are larger effects on some of the events. However, the full picture shows that there is
another substantial group of events for which the peak magnification is initially overpredicted by
6-10 magnitudes.

These systematic overpredictions are known to be the result of the maximum-likelihood es-
timator being biased, or in other words: "What you get is not what you expect". In fact, a "bet-
ter" prediction arises from a posterior-mode estimate [[[4]], also known as maximum a-posterior or
"MAP" estimate (p)y;op, Which is a rather simple modification of the maximum-likelihood esti-
mate (P),y.. Where the likelihood .Z’(data; p) is multiplied by a prior probability density fy(p) of
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Figure 8: Difference in the prediction of the peak magnitude shift (Am)y = 2.51gAp between the first
announcement of the ongoing event by the OGLE team (’initial’) and the event being over (’final’) for 386
non-anomalous events alerted by OGLE between 1 Apr 2007 and 15 Oct 2007 that were completed on 14
Nov 2007 [E E]. While the upper panels refer to the maximum-likelihood estimates carried out by OGLE,
the results shown in the lower panels correspond to the posterior-mode (or MAP) estimates as obtained by
SIGNALMEN [[3].

the model parameters p, so that

B Z(data; p) fo(p)
(P)map = argmax [ Z(data;p’) fp(p’)dp’

6D

For the various model parameters, such priors can be obtained from the sample of events,
where Fig. f] shows the result of such an analysis based on the OGLE 2002 season data, where fits
to simple functions have been carried out [[[4], leading to

f(lgAg) = 0.660 exp(—1.2891gAy),

f{lgft/(1d)]} = 0.476 exp (— {lefte/ (10"13)]38 1'333}2) : (5.2)

Applying such priors, successive MAP estimates along with the corresponding ML estimate
for the event OGLE-2003-BLG-208 as it evolves are shown in Fig. [[(]. Initially, the MAP estimate
underpredicts the peak magnification, whereas the ML estimate overpredicts it. At this stage, we
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Figure 9: Fitted parametric prior functions for the peak magnification Ay and the event time-scale tg, listed
in Eq. (E), that resulted from an analyis of the 2002 season OGLE data [E] — reproduced by permission
of the AAS.

essentially do not have any idea about where the event will go. Apparently, the MAP estimate
approaches the correct epoch and correct order of peak magnification substantially faster than the
ML estimate. It is also interesting to see that the future development of the event becomes fairly
predictable, once the inflection point is reached. Since the light curve is symmetric, it is basically
determined once the peak has been passed.

As can be seen from Fig. §, the MAP estimation carried out by the SIGNALMEN anomaly
detector [[[3] on the 2007 OGLE season data with the respective adopted prior functions leads to a
substantially larger number of early underpredictions, but a more appropriate value is approached
quite soon with just a few further data points being reported. On the other hand, and more impor-
tantly, the vast overpredictions disappear almost entirely.

6. Inhomogeneous data and outliers

Further difficulties arise from outliers in the data, which will definitely show up from real-time
photometry and can have disastrous effects if not properly accounted for. Robust-fitting techniques
ensure that the model follows the bulk of the data, and thereby practically eliminate the influence
i(k)(p) that depend on the deviation of data
from the considered model, and by minimizing a modified X2, namely

of data outliers. This is achieved by using weights w

s g FO M, py — ¥ 2

K =k _(k K ;P

Xr%lod(ti( )7F|( )70[(3| )’p) = z ZWI( )(p) ( : O'(k) : : (61)
K=1i=1 r
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Figure 10: Prediction of the light curve of event OGLE-2003-BLG-208 at various successive stages resulting
from a maximum-likelihood (ML) estimate of the model parameters (dashed line) or a posterior-mode (or
MAP) estimate (solid line) [@]. — reproduced by permission of the AAS.

While the literature is full of proposed choices for suitable weights [f], the SIGNALMEN
anomaly detector [] in particular determines the absolute residuals
E K (ti(k);p) _ ,:i(k)

o

(6.2)

(k)

and their median value /(¥ (p), and defines the weights w;"’ (p) to be a bisquare function of the ratio
between the absolute residual and its median, i.e.

2
NEORY (K) ®)

0 for [r{ (p)| > K™ (p)

with the further choice K = 6. It is important to realize that it is not just the deviation in units of the
reported measurement uncertainty that is being used, but that a scaling with the median residual is
made.

The procedure of minimizing and reweighting can be iterated until a desired degree of conver-
gence is reached. Within the same iterative process, further relative weights between different sites
and filters can also be incorporated. In particular, forcing all

e FR k. gy g\
(¥ = 3w (p) [ PR 64)
= o
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Figure 11: Microlensing anomalies related to the source, lens, or observer. Those shown in blue have been
identified in observed events.

to be proportional to the number of respective data points Nk normalizes the data to the actual
scatter, and avoids the estimation of model parameters being dominated or (mis-)driven by data
sets that show typical deviations that by far exceed the reported uncertainties. However, given that
we are dealing with non-linear models, it can happen that one ends up switching between different
local minima, where the convergence happens only within each of the subsequences. In fact, even
ordinary events come with model ambiguities.

7. Microlensing anomalies

7.1 Overview of anomalies

Beyond point-like sources and lenses, and a static observer, there are a variety of effects that
create so-called anomalies in microlensing light curves, where Fig. [T|presents an overview. Those
can be grouped into alterations with respect to the source, the lens, or the observer. The source
affects the microlensing magnification by means of the distribution of its light, where one observes
simply the superposition of light rays. In contrast, it is the distribution of mass that matters for
the lens. Here, things become far more sophisticated, given that the deflection law is altered. The
observer has an effect on the light curve only by means of its position, which effectively alters the
lens-source trajectory, so that one finds parallax effects.

Three different effects shifting the position of the observer have been observed by now. An
annual parallax [[[§—[[9] results from the revolution of the Earth around the Sun, a diurnial parallax
[] results from the rotation of the Earth around its axis, and a displacement of the position such as
achieved by observations from an artificial satellite [2]—P3] marks the remaining type of parallax.
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Anomalies caused by the structure of the gravitational microlens arise from it being composed
of several components, including double stars and planetary systems [R4]—R7]], and such systems in
general show an orbital motion [[[7, B8 R9)l, which however frequently goes undetected. Given that
the angular Einstein radius Bg usually by far exceeds the angular radius of the lens star, the finite
angular extent is unlikely to play a role, and so far it can safely be neglected for all known events.

Similar to the lens, the source might be composed of more than one object. Stellar binaries
have first been convincingly identified with systems that allow their characterization by means of
wiggles resulting from their orbital motion [B0—B2]], whereas the characterization of practically
static systems [B3]] suffers both from the lack of suitable signatures or the existence of alternative
interpretations. Revealing planets around the source stars prove difficult due to their small contri-
bution to the total light, but they might be detectable during caustic passages [B4]] or indirectly from
the periodic motion of their host star resulting from the gravitational pull of the orbiting planet [B5]].
The finite angular size of the source regularly plays a role in a substantial fraction of events, in par-
ticular if the source passes over a caustic (including the point-like caustic at the position of a single
point-mass lens) or comes close to it [B, B7]. This makes gravitational microlensing one of the
few successful techniques for measuring brightness profiles of stars [B8, B9, including starspots
(B0, ]1, and the only one known that works for quite distant ones (several kpc away), offering a
wide choice of stellar types for study.

7.2 Binary point-mass lenses

Binary point-mass lenses constitute a frequent scenario that is full of intricacies. Moreover, it
comprises star-planet systems, and these need to be distinguished from stellar binaries.

With B and @ denoting the two-dimensional position angles of the source star and its image
resulting from the gravitational bending of its light, respectively, the corresponding dimensionless
y =B/6k and x = 8/ 06 are related for a single point-mass lens by the gravitational lens equation

X

For weak gravitational fields, the deflections by the individual components of a binary lens can be
superposed, and provided that the orbital period of this system by far exceeds the event time-scale
tg, lens binarity enters the lens equation by means of only two further dimensionless parameters,
which can be taken as d, where d B is the instantaneous angular separation, and the secondary-to-
primary mass ratio ¢, so that

qd d
v = x 1 XI— Tiq q X1+ 17
=X — _
1 2 1 2
4 ( 11— 1ch> +X3 4 (XﬁL liq) +X%3
1 X2 q X2
Y2 = X2 — - , (7.2)
1 2 1 2
Ty d T )

where a centre-of-mass system has been adopted, and the binary system has been aligned with the
y1-axis. Given that the binary-lens axis defines a reference system for the source trajectory, the
trajectory angle @ is a further model parameter, where the separation parameter in units of Og is
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Figure 12: Caustics (red) and magnification (greyscale) for binary lenses of three mass ratios, namely
q € {1,0.3,0.1} (top to bottom), and angular separations d B that correspond to the wide, intermediate, and
close topologies (from left to right) as well as the transitions. The positions of the lens objects are indicated
by filled blue circles with their size reflecting the respective mass. The centre-of-mass of the lens system
marks the origin of the coordinate system.

given by

—sind t—1ty [ cosa
u(t;uo,to,tg, ) = Ug

. (7.3)
cosa b3 sina

Finally, the arising finite caustics frequently reveal the angular source radius 6,, providing another
parameter p, = 6, /6, so that one finds the 7-dimensional parameter vector p = (Uo, to,tg, o,d,q, Ox).
The caustics correspond to those loci, for which the magnification of a point source tends to
infinity, which means that the Jacobian determinant of the lens mapping, Eq. (7.2)), vanishes. The
caustics for a binary point-mass lens match one of just three different topologies [{2] {£3]| depending
on the separation parameter d, where there are two transitions from wide to indermediate, and from
intermediate to close binaries. As Fig. [J illustrates, there are two diamond-shaped caustics on
the binary axis for a wide binary. On the transition to the intermediate binary, the two cusps facing
each other on the binary axis touch, and a single six-cusp caustic results. At the transition to a close
binary, the caustic curve touches itself above and below the binary-lens axis, on detachment leaving
two cusps facing each other, so that for close binaries, there is a single central diamond-shaped
caustic, and two off-axis triangular-shaped caustics. This classification transits smoothly from the
equal-mass case to extreme mass ratios such as those representative of a star with a tiny planet, with
however the range for intermediate binaries becoming smaller and vanishing as  — 0 [f4]. The
shape and the position of the caustics are very important characteristics of the magnification pattern.
Given that the magnification along an observed light curve is a one-dimensional cut through this
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pattern, the morphology of light curves can be classified based on the topology of the caustics
and the source trajectory, and seed solutions can be inferred from a finite number of matching
configurations [@].

8. Devising amodelling strategy

Partly as part of a review of what was mentioned before, let us put together some essential
ingredients for building a successful modelling strategy. As a starting point, it is valuable to iden-
tify characteristic features of the collected data. These features then need to be matched to the
model parameters. The easiest way for achieving this is to adopt model parameters that are directly
related to the observed features. If that can be realized, the full parameter space decouples into
subspaces with reduced dimensionality, where parameter searches can be carried out inside each
of them independently. Furthermore, a feature-oriented parametrization avoids strong correlations
between model parameters, while degeneracies are absorbed into a single parameter, as has been
demonstrated in the case of ordinary light curves in Sect. .3

An explicit particular recipe has been derived for finding all possible decriptions of the nature
of events for which the source passes over a line-shaped (fold) caustic [[€]], illustrated in Fig. I3,
which marks a worked example of the more general concepts. In this specific case, the fold-caustic
passage marks a characteristic feature, and just this part of the light curve can be modelled easily
with a semi-analytic function of 5 parameters. With these parameters already determined, a search
for the full matching set of parameters only needs to be carried out in a lower-dimensional subspace.

Strategies of such a kind had in fact been adopted in several earlier modelling efforts [[7, £8]].
For an automated modelling system, artificial neural networks might replace part of the human
intuition in identifying the characteristic features [@]. Relating these to a complete set of initial
seeds for finding adequate model parameters can then be done by means of event libraries [5(] or
analytic results [{5]. It is hoped that one day it will be possible to constrain the nature of ongoing
microlensing events almost in real time as the data are being acquired.
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