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Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Md., USA
E-mail: morris@jhu.edu

V. Chiochia

Physik Institut der Universität Zürich-Irchel, 8057 Zürich, Switzerland

New techniques for the reconstruction/validation and the simulation of hits in the pixel detectors

of the Compact Muon Solenoid (CMS) Experiment are described. The techniques are based upon

the use of pre-computed projected cluster shapes or “templates”. A detailed simulation called

Pixelav that has successfully described the profiles of clusters measured in beam tests of radiation-

damaged sensors is used to generate the templates. Althoughthe reconstruction technique was

originally developed to optimally estimate the coordinates of hits after the detector became radia-

tion damaged, it also has superior performance before irradiation. The technique requires a priori

knowledge of the track angle which makes it suitable for the second in a two-pass reconstruction

algorithm. However, the same modest angle sensitivity allows the algorithm to determine if the

sizes and shapes of the cluster projections are consistent with the input angles. This information

may be useful in suppressing spurious hits caused by secondary particles and in validating seeds

used in track finding. The seed validation is currently understudy but has the potential to sig-

nificantly increase the speed of track finding in the CMS reconstruction software. Finally, a new

procedure that uses the templates to re-weight clusters generated by the CMS offline simulation

is described. The first tests of this technique are encouraging and when fully implemented, the

technique will enable the fast simulation of pixel hits thathave the characteristics of the much

more CPU-intensive Pixelav hits. In particular, it may be the only practical technique available to

simulate hits from a radiation damaged detector in the CMS offline software.
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1. Introduction

Hybrid pixel detectors are now coming into widespread use atthe CERN Large Hadron Col-
lider (LHC). Although they function similarly to strip detectors, they also differ in some significant
ways and these differences affect the hit reconstruction algorithms. One significant difference is
that the pixel cells are not capacitively coupled. There is no coupling matrix to understand and
therefore the charge sharing is caused entirely by charge collection and induction effects in the
detector substrate. Another difference is that the two-dimensional clusters contain hit position
and track angle information. The fine sampling of the clusterenables new possibilities in signal
processing that can suppress the deleterious effects of large delta rays. Because the new genera-
tion of pixel detectors are “n+ in n” devices, they collect electrons and must cope with potentially
large Lorentz drift effects. This fact implies that the usual silicon strip reconstruction technique
based upon the integral of the “η-distribution” [1] does not completely self-calibrate (there is an
unknown integration constant) and requires additional calibration. The new generation of pixel
detectors at the LHC will be exposed to much more radiation than previous generations of silicon
tracking detectors. The resulting space charge and signal trapping effects will modify the responses
of these detectors significantly during their operational lifetimes. A reconstruction technique that
can account for changing detector response is clearly desirable. This talk describes a new hit re-
construction technique [2] that has been developed for the pixel detector [3] of the Compact Muon
Solenoid (CMS) Experiment [4]. The technique also provideshit validation information and can
be adapted to re-weight simulated clusters to account for radiation damage.

2. Pixel Clusters

The deposition of charge by a track having anglesα andβ with respect to the localx- and
y-axes of a barrel module is shown in Fig. 1. The primary track deposits approximately 25,000
electron-hole pairs per 300µm of track length more or less uniformly in they-direction. For
highly inclined tracks, about 12,500 pairs are deposited ineach 150µm wide pixel column. The
n-in-n sensors collect electrons which have a large Lorentzangle (∼ 23◦ at 150 V bias [5]) in the
4 T magnetic field of CMS. The charge from the larger local z-side of the sensor typically drifts by
more than a pixelx-width into the adjacent row of pixels producing clusters with the typical shape
shown in Fig. 2. The track projection is shown as the dashed red line on the cluster. Note that
the track center, shown as the cross, is contained in a pixel that does not have enough charge (the
threshold is approximately 2.5k electrons) to trigger its readout. The primary ionization process
produces large fluctuations in charge along the track. As should become clear from the following
discussion, any pixel signal larger than the most probable one for a full track-traversal of the pixel
does not contain useful position information. Energetic delta rays often cross pixel cell boundaries
causing strong charge correlations between adjacent pixelcells and sometimes causing unusual
cluster shapes.

The single most important feature of pixel clusters is that the shape of thex-projection of the
cluster is independent of they-position of the hit and they-size of the cluster (independent of the
angleβ ). Similarly, the shape of they-projection of the cluster is independent of thex-position
of the hit and thex-size of the cluster (independent of the angleα). This x-y factorization is a
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Figure 1: Geometrical and Lorentz-drift induced in charge sharing ina “flipped” pixel barrel module.

consequence of the facts that the field configurations in the pixels don’t couple the two coordinates
except perhaps in the corners of the cells where there are small 2-D focusing effects and that the
pixels have a periodic structure. This property of the system is heavily exploited by the standard
CMS reconstruction algorithm [6] and by the template algorithm described in this note. They sum
thex- andy- charge projections of the two-dimensional clusters and treat the projections or profiles
independently. They-profiles for a large sample ofβ = 15◦ tracks that were measured from several
test sensors are shown in Fig. 3. Note that the unirradiated sensor (fluenceΦ = 0) has a rectangular
profile with well defined edges. The average signal in the interior pixels of the projection is constant
as expected. These (projected) pixels contain no precise position information. A simple analysis
shows that if one assumes that the statistical uncertainty on a signals(y) is proportional to

√
s, then

the uncertainty on the parametery, δy, is given by the following expression,

δy = C

√

s(y)
ds/dy

(2.1)

wereC is a constant. This suggests that most of the position information is contained in the smaller
signals near the cluster edges where the slope is largest. After irradiation to fluenceΦ = 8×
1014 neq/cm2, charge trapping causes the cluster to have a bias-voltage-dependent shape. Note
that although charge is preferentially lost from the “far” end of the cluster, the interior pixels now
contain position information. A summary of the key featuresof the pixel clusters follows:

• The shapes ofx- andy-projections of the two-dimensional pixel clusters are independent.

• There is no precise position information in very large pixelsignals. Once the maximum
signal is exceeded, one only learns about the likelihood of energetic delta ray emission (still
useful information).

• The best position information is contained in the small pixel signals near the cluster ends.

3. Standard Reconstruction Technique

The standard technique for the reconstruction of pixel hitsthat is implemented in the CMS
offline software (CMSSW) is an “eta-like” technique that uses the signals in the first and last pixels
of the x and y cluster projectionsPx/y

F/L. The use of the first and last projected pixel charges reduces
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Figure 2: Cluster shape for the barrel hit shown
in Fig. 1. The signals in each pixel are given in
kiloelectrons. Those shown in green are below the
readout threshold. The track projection is shown
as the dashed red line. Thex- and y-projections
are also shown as one-dimensional arrays. The co-
ordinates of the boundaries between the first and
second pixels (xF/yF ) and the next-to-last and last
pixels (xL/yL) and the charges of the first and last

pixelsPx/y
F/L are also shown.

Figure 3: Charge collection profiles for
125x125µm2 test sensors illuminated by a
β = 15◦ test beam. An unirradiated sensor (flu-
enceΦ = 0) is compared with a heavily irradiated
sensor (fluenceΦ = 8×1014 neq/cm2) operated at
several bias voltages.

the sensitivity of the procedure to delta ray emission whichbecomes quite likely in long clusters.
The reconstructed hit coordinates in each projection are given by the following expressions [6],

xrec =
xF +xL

2
+

Px
L −Px

F

Px
L +Px

F
· Wx

eff(cotα)

2
− ∆x

2
(3.1)

yrec =
yF +yL

2
+

Py
L −Py

F

Py
L +Py

F
· Wy

eff(cotβ )

2
− ∆y

2
(3.2)

where:xF/L andyF/L are the coordinates of the first/second and last/next-to-last pixel boundaries
(defined in Fig. 2),Wx

eff andWy
eff are the total charge widths in the end pixels (defined below),and

∆x and∆y are the maximum Lorentz-drift in thex- andy-directions. Note that∆y vanishes in the
pixel barrel but is non-zero in the pixel endcaps. The effective charge widths in the end pixels of
the two projections are given by the following expression

Wx
eff(cotα) = |T cotα + ∆x|− (xL −xF) (3.3)

Wy
eff(cotβ ) = |T cotβ + ∆y|− (yL −yF) ≈ pitchy

F +pitchy
L

2
(3.4)

where: T is the sensor wafer thickness, and pitchy
F/L are the pitches of the first and last pixels in

the y-projection. These expressions are valid for all clusters even those that contain the double-
size pixels that are present at the edges of the readout chips. The use of the average pitch size
to approximateWy

eff makes it insensitive to the track direction and appropriatefor the first pass of
a two pass hit reconstruction algorithm without sacrificingmuch resolution. Problems do arise,
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however, when equations 3.1 and 3.2 are used to reconstruct hits in a radiation damaged detector.
After an exposure of 6×1014 neq/cm2, the residual distributions develop biases of 30-50µm and
the resolutions are significantly worsened. To overcome these difficulties, a new technique that
uses a priori information to fit the entire projected clustershapes was developed. It is based upon a
detailed simulation that was developed to interpret several beam test measurements. The following
sections describe the simulation and the new simulation-based reconstruction technique.

4. Pixelav Simulation

The detailed sensor simulation, Pixelav [8], incorporatesthe following elements: an accurate
model of charge deposition by primary hadronic tracks (in particular to model delta rays) [9]; a
realistic electric field map resulting from the simultaneous solution of Poisson’s Equation, carrier
continuity equations, and various charge transport models; an established model of charge drift
physics including mobilities, Hall Effect, and 3-D diffusion; a simulation of charge trapping and the
signal induced from trapped charge; and a simulation of electronic noise, response, and threshold
effects.

Several of the Pixelav details described in [8] have changedsince they were published. The
commercial semiconductor simulation code now used to generate a full three dimensional electric
field map is the ISE TCAD package [10]. The charge transport simulation originally integrated the
position and velocity equations which required very small step sizes to maintain stability. It was
modified to integrate only the position equation by using thefully-saturated drift velocity,

d~r
dt

=
µ

[

q~E + µrH~E×~B+qµ2r2
H(~E ·~B)~B

]

1+ µ2r2
H |~B|2

(4.1)

whereµ(~E) is the mobility,q = ±1 is the sign of the charge carrier,~E is the electric field,~B is the
magnetic field, andrH is the Hall factor of the carrier. The use of the fully-saturated drift velocity
permits much larger integration steps and significantly increases the speed of the code. A final
speed enhancement results from the implementation of adaptive step sizing in the Runge-Kutta
integrations using the Cash-Karp embedded 5th-order technique [11]. Pixelav was developed to
use the vector (SIMD) processing on the PowerPC G4 and G5 families of processors. A port to
the less capable Intel SSE architecture has recently been performed. Early testing indicates that the
speed of the ported code running on a 2.8 GHz Xeon is approximately 50% of the speed achieved
on a 2.5 GHz G5 processor.

The simulation was originally written to interpret beam test data from several unirradiated
and irradiated sensors. It was extremely successful in thistask, demonstrating that simple type
inversion is unable to describe the measured charge collection profiles in irradiated sensors and
yielding unambiguous observations of doubly-peaked electric fields in those same sensors [12].
In these studies, charge collection across the sensor bulk was measured using the “grazing angle
technique” [13]. As is shown in Fig. 4, the surface of the testsensor was oriented by a small angle
(15◦) with respect to the pion beam. Several samples of data were collected with zero magnetic field
and at temperature of−10◦C. The charge measured by each pixel along they direction sampled a
different depthz in the sensor. Precise entry point information from the beamtelescope was used
to produce finely binned charge collection profiles.
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Figure 4: The grazing angle technique for determining charge collection profiles. The charge measured by
each pixel along they direction samples a different depthz in the sensor.

The charge collection profiles for a sensor irradiated to a fluence ofΦ = 5.9×1014 neq/cm2

and operated at bias voltages of 150 V, 200 V, 300 V, and 450 V are presented in Fig 5. The mea-
sured profiles are shown as solid dots and the Pixelav-simulated profiles are shown as histograms.
They are compared with Pixelav simulations based upon the electric field produced by a tuned
two-trap model [12].
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Figure 5: The measured charge collection profiles at a temperature of−10◦C and bias voltages of 150 V,
200 V, 300 V, and 450 V are shown as solid dots for a fluence of 5.9×1014 neq/cm2. The two-trap double
junction simulation is shown as the solid histogram in each plot.

The simulation describes the measured charge collection profiles well both in shape and nor-
malization (the charge scale of the data is uncertain at the 10% level). The apparently unphysical
“wiggle” observed at low bias voltages is actually the signature of a doubly peaked electric field
having a minimum near the midplane of the sensor and maxima atthe n+ and p+ implants. The
relative signal minimum neary = 700 µm corresponds to the minimum of the electric fieldz-
component,Ez, where both electrons and holes travel only short distancesbefore trapping. This
small separation induces only a small signal on the n+ side of the detector. At larger values ofy,
Ez increases causing the electrons drift back into the minimumwhere they are likely to be trapped.
However, the holes drift into the higher field region near thep+ implant and are more likely to be
collected. The net induced signal on the n+ side of the detector therefore increases and creates the
local maximum seen neary = 900µm.

5. Template Reconstruction Algorithm

The template-based reconstruction algorithm is a procedure that translates pre-stored cluster
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projection shapes, also called “templates”, across measured cluster projections to find the best
fit and hence an estimate of the hit position in both x and y. ThePixelav simulation is used to
generate the templates which are stored as functions of cotα and cotβ along with large quantities
of auxiliary information in a template object. The following sections describe this procedure.

5.1 Motivation

One of the original motivations for the template-based reconstruction algorithm was the real-
ization that radiation damage would significantly change the charge sharing functions of the de-
tector during large portions of its useful life. Any reconstruction algorithm that was not tunable
would become biased and non-optimal as the detector ages. Another motivation was the observa-
tion [shown in Fig. 3] that the interior pixel signals in they-projections of long barrel clusters would
acquire position sensitivity as the detector ages. The “Standard” algorithm uses only the end pixels
of the projections which is nearly optimal before aging but becomes less so after irradiation. The
implementation of an algorithm that uses all of the (projected) pixel information was an obvious
choice. Since Pixelav had demonstrated that it could describe the behavior of a heavily irradiated
detector and since we had demonstrated that we could tune that description, it seemed obvious to
base a more capable algorithm on the detailed simulation. This has numerous advantages in imple-
mentation over a purely data-driven approach. Once the detailed simulation has been tuned, it can
generate cluster shapes, predict resolutions, and providegoodness-of-fit normalizations for a large
range of track angles and cluster charges independently of other detector subsystems and their state
of operation (ie alignment). In effect, Pixelav becomes a “software test beam” replacing the very
limited pixel beam test data available.

5.2 First Pass Template Generation

The template algorithm requires a-priori knowledge of the projected cluster shapes as func-
tions of cotα , cotβ , and the hit position. This information is extracted from 30000-event samples
simulated by Pixelav at fixed track angle and random hit position. The charge distributions of the
samples manifest significant Landau tails due energetic delta ray emission. Since delta-rays distort
the cluster shapes, the template generation procedure utilizes only those events having less than the
average cluster chargeQavg. This retains approximately 70% of the (asymmetrically-distributed)
sample and yields an accurate determination of the projected cluster shapes as caused by the ge-
ometrical, charge drift, trapping, and charge induction effects. Note that the determination of the
average cluster shapes is quite insensitive to the exact value of the cluster charge requirement.

The template generation is done in two passes. The first pass processing is described in this
section and the second pass is described in section 5.3. During the first pass, thex- andy-projections
of simulated clusters corresponding to fixed track angles are averaged into respective 7-pixel by 9-
bin and 21-pixel by 9-bin arrays. By construction, the struck pixel is labelled as pixel 0 in both
projections. The simulated x and y coordinates of the hit areeach binned in bins of width 0.125
pixel pitch. The bins are chosen so that the middle bin is centered on the pixel center and the
end bins are centered of the pixel boundaries. This yields 9 bins spanning the pixel 0 where the
end pixels differ by a full pixel pitch as shown for they-projection in Fig. 6. The average signal
profile for all hits in each bin is stored in the 7-pixel or 21-pixel direction of the arrays. A template

7



P
o
S
(
V
e
r
t
e
x
 
2
0
0
7
)
0
3
5

A new technique M. Swartz

entry therefore consists of the average signalSy/x
i, j in each projected pixeli and bin j at fixedα

andβ angles. They-templates derived from simulated samples corresponding to unirradiated and
heavily irradiated (fluenceΦ = 6×1014neq/cm2) cotβ = 1.97 samples are shown in Fig. 6. Note
that trapping reduces the projected signals but produces apparently larger clusters from charge
induction. The application of the 2500 electron readout threshold actually reduces the observed
cluster size.

y

pixel 0

1 2 3 4 5 6 7 80

Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0

 1       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0

 2       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0

 3       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0

 4       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0

 5       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0

 6       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0

 7       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0

 8       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0

pixel 1pixel -1

Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 0       .0       .0       .0       .0   8741.4   8925.9   7156.1   5599.7    661.8    117.3       .0       .0       .0

 1       .0       .0       .0       .0   7476.2   9160.4   7301.2   6194.2    872.6    148.9       .9       .0       .0

 2       .0       .0       .0       .0   6160.6   9403.8   7423.7   6417.5   1429.4    187.5      9.6       .0       .0

 3       .0       .0       .0       .0   4736.1   9578.0   7614.0   6610.0   2081.9    233.6     20.6       .0       .0

 4       .0       .0       .0       .0   3432.4   9790.6   7814.7   6764.0   2789.8    291.1     34.0       .0       .0

 5       .0       .0       .0       .0   2112.5   9944.1   8087.9   6894.2   3490.9    357.9     49.4       .0       .0

 6       .0       .0       .0       .0    750.7  10174.1   8382.4   7018.6   4199.1    440.9     67.9       .0       .0

 7       .0       .0       .0       .0     33.3  10014.0   8695.2   7053.7   4882.2    538.5     90.1       .0       .0

 8       .0       .0       .0       .0       .0   8741.4   8925.9   7156.1   5599.7    661.8    117.3       .0       .0

Unirradiated Template

Φ=6x1014 n
eq

/cm2 Template

Figure 6: The signal averagesSy
i, j of 13 of the pixels in they-projection of cotβ = 1.97 barrel clusters for

each of 9 bins in the y hit position. They are shown for unirradiated and heavily irradiated sensors ((fluence
Φ = 6×1014neq/cm2).

The same procedure is also used to calculate the expected rms, ∆Sy/x
i, j of the average signals.

The ∆Sy/x
i, j for the unirradiated cotβ = 1.97 sample are plotted vs the projected signals in Fig. 7.

The signal/rms points for pixels from either side of the cluster projection are shown as different
colors. The signals from the “near” side, the side with the shorter carrier drift path to the readout
chip, are shown as red points. The signals from the “far” side, the side with the longer carrier drift
path, are shown as blue points. The two sets of points are fit toindependent functions of the form

∆Sy/x
i, j =

√

a+bSy/x
i, j +c(Sy/x

i, j )2 +d(Sy/x
i, j )3 +e(Sy/x

i, j )4 (5.1)

where a-e are constants. The best fits to the near and far side data are shown as red and blue solid
curves in Fig. 7. Note that there are essentially no differences between the cluster ends for an

unirradiated sensor and that the RMSs scale dominantly as∆Sy/x
i, j ∝

√

Sy/x
i, j . The same information
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is shown for the irradiated sensor in Fig. 8. Note that the fluctuations of the far end are significantly
reduced by charge trapping and that the scaling of∆Sy/x

i, j is approximately linear inSy/x
i, j .

Figure 7: The rms versus signal for they-projected
pixels of the unirradiated cotβ = 1.97 sample. The
signals from the near side, the side with the shorter
carrier drift path to the readout chip, are shown
as red points. The signals from the far side, the
side with the longer carrier drift path, are shown as
blue points. The solid curves are best fits to equa-
tion 5.1.

Figure 8: The rms versus signal for they-projected
pixels of the cotβ = 1.97 sample irradiated toΦ =

6×1014neq/cm2.The signals from the near side are
shown as red points and the signals from the far
side are shown as blue points. The solid curves are
best fits to equation 5.1.

An identical procedure is applied to thex-projection of each cluster at each set of track angles.
As was discussed in Section 2, the shapes of thex-projections are independent of cotβ and depend
upon cotα only. The normalization of the projectedx-signals does depend upon cotβ , however, the
fitting algorithm discussed in Section 5.3 is insensitive tothe normalization. Therefore, a single set
of x-projections spanning the relevant range in cotα is sufficient to fit all clusters. The predicted
RMS uncertainties of the signals do depend upon cotβ , however, they do so in a scalable way.
This is shown in Fig. 9 where the rms and averagex-signals are plotted for three values of cotβ
corresponding to the three values of pseudorapidity (η): 0.5, 1.5, and 2.0. The best fits for the
near and far cluster ends atη = 2.0 are scaled by the factor

√

Qavg(η)/Qavg(2.0) and shown as the
dashed (η = 1.5) and dotted (η = 0.5) curves. It is clear that a single set of rms functions can be
scaled to other values of cotβ . The actual implementation of thex-template interpolation makes
use of this property.

The first pass of the template generation algorithm produces9-bin templates in both x and
y; 5-parameter descriptions of thex-rms andy-rms functions for both near and far ends of the
clusters; the average chargeQavg; and maximum signals for thex- andy-projections,Sx

maxandSy
max.

These are stored in individual files for each each set of trackangles. The barrel track angles are
chosen to sample they-cluster lengthT cotβ in 0.25 pixel increments from 0 pixels (η = 0) to
11.5 pixels (η = 2.5) [it was found that coarser 0.5 pixel sampling lead to interpolation errors and
resolution loss at the 5% level for the worst cases (midway between the points)]. Since displaced
vertices produce acceptance tails toη = 2.9 and the long clusters in this region are very expensive
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Figure 9: The rms and averagex-signals are plotted for three values of cotβ corresponding to the three
values of pseudorapidity: 0.5, 1.5, and 2.0. The best fits forthe near and far cluster ends atη = 2.0 are
scaled by the factor

√

Qavg(η)/Qavg(2.0) and shown as the dashed (η = 1.5) and dotted (η = 0.5) curves.

computationally, coarser 0.5 pixel sampling was chosen from 11.5 to 18 pixely-cluster lengths.
The cotα values are chosen to sampleα ′ = α − π/2 in 0.075 radian increments from -0.225 to
0.225 radians in the barrel.

5.3 Second Pass Template Generation: Reconstruction Algorithm

The second pass of the template generation uses the pre-stored results of the first pass to apply
the actual template reconstruction algorithm to the same data samples used to generate the 9-bin
templates. The second pass generates information on biases, errors, corrections, and goodness-of-
fit that are combined with the results of the first pass to builda 448 kB ascii template summary file
that represents a given set of operating conditions as simulated by Pixelav.

5.3.1 Philosophy and Strategy

A simple description of the template algorithm is that it translates and fits the pre-tabluated
projected cluster shapes to the measured projections of real data clusters to estimate the best hit
position. This is a loaded statement because the measured signals have large fluctuations caused
by delta rays. The delta rays also produce strong correlations in the fluctuations of adjacent pixels.
A correct statistical treatment involves considerable technical complexity. Luckily, one can appeal
to the observation made in Section 2 that the hit position information is contained primarily in
the small signals. Large signals carry no precise information and are also likely to involve the
large fluctuations that complicate any analysis. The use of the low Q events to make the 9-bin
templates avoided the effects of the fluctuations on the template shapes. Similar advantages in
the reconstruction of the entire sample can be achieved by limiting the size of individual pixel
signals. The analysis in Section 5.2 also produced expectedsignal rms’s. These are obviously
highly biased quantities that apply only to the smaller signals, those that carry position information.
However, they are appropriate weights in the definition of a chisquare function that compares the
measured cluster shapes with the template shapes. To avoid the complexity of correlations between
projected pixel neighbors, a simple diagonal chisquare function is defined. A diagonal chisquare
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function cannot be correctly normalized even for clusters with truncated pixel charges, however,
the goodness-of-fit criterion can be approximately normalized to account for the deficiencies of the
approach. This is a somewhat academic discussion because the performance of the algorithm is
quite insensitive to the weighting of projected pixel signals in the chisquare function.

Finally, one should note that the template reconstruction algorithm makes the implicit as-
sumption that there is prior knowledge of the track direction before the algorithm is invoked. The
algorithm is therefore suitable for a second pass to refine the estimates of hit position and its un-
certainty. This is not a major constraint because of the highgranularity of the pixel detector and
the relatively large spacing between pixel planes. Any multi-plane pixel-based reconstruction algo-
rithm should be able to establish a sufficiently accurate knowledge of the track direction to achieve
the full resolution of this algorithm.

5.3.2 Description of the Template Algorithm

The following is a description of the template algorithm. The reader should note that the
template-based approach implicitly incorporates all of the relevant detector physics into the tem-
plates themselves. Lorentz drift manifests itself as an offset in the projected cluster shapes with
respect to bin number. Non-uniformity of the Lorentz drift modifies the shapes of the templates.
Charge loss and trapping makes them asymmetric. This implies that although the templates them-
selves depend upon which projection is being analyzed, the actual procedure does not depend upon
the projected direction. The following description applies to the general reconstruction of a pixel
cluster. Not all steps are needed for the second-pass template processing. The differences between
these cases are noted.

Preliminary Template Processing: The first step is to interpolate the templates and auxiliary
information in cotα and cotβ . Simple linear interpolation in cotβ is used for ally-related quan-
tities. Thex-template is interpolated linearly in cotα only whereas otherx-related quantities are
interpolated in both cotα and cotβ . Parameterized quantities are not interpolated until after the en-
tire function has been evaluated at each (cotα , cotβ ) point. The interpolation step is unnecessary
for the second-pass template processing because the requisite information was prepared during the
first-pass processing.

The 9-bin templates in x and y are shifted by±1 and±2 pixels to span the 5 central pixels of
the cluster for the possible locations of thex- andy-hit coordinates. This is illustrated in Fig. 10
for the unirradiatedy-template shown in Fig. 6. The resulting templates now have 41 bins so that
bins 4, 12, 20, 28, and 36 correspond to hit positions at the centers of pixels -2, -1, 0, 1, and 2,
respectively. The templates are also padded with zeros to increase their lengths to 25 pixels in y
and 11 pixels in x to match the size of the working buffers usedto contain the cluster data.

Preliminary Cluster Processing: The total charge of the two-dimensional input cluster is cal-
culated before the individual pixel charges are truncated to a maximum size given by the angle-
interpolated value ofSy

max. After this truncation (also called “decapitation”) step,the 1-D projec-
tionsPy/x

i are calculated. These working buffers have lengths 11 in x and 25 in y to accommodate
the following processing procedure. Any double pixels are expanded to occupy 2 adjacent ele-
ments in the projection arrays where each contains one half of the total double-pixel charge. The

11
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Bin    Px-6     Px-5     Px-4     Px-3     Px-2     Px-1     Px 0     Px+1     Px+2     Px+3     Px+4     Px+5     Px+6

 7       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0       .0       .0

 8       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0       .0

 9       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0       .0

10       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0       .0

11       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0       .0

12       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0       .0

13       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0       .0

14       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0       .0

15       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0       .0

16       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0       .0

17       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0       .0

18       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0       .0

19       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0       .0

20       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0       .0

21       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0       .0

22       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0       .0

23       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0       .0

24       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0       .0

25       .0       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0       .0

26       .0       .0       .0       .0       .0   8512.6  13597.7  13559.3  13577.9   1688.0       .0       .0       .0

27       .0       .0       .0       .0       .0   6762.7  13607.2  13677.0  13601.3   3428.0       .0       .0       .0

28       .0       .0       .0       .0       .0   5165.2  13569.4  13603.1  13644.9   5039.3       .0       .0       .0

29       .0       .0       .0       .0       .0   3412.1  13718.7  13604.0  13630.6   6812.7       .0       .0       .0

30       .0       .0       .0       .0       .0   1703.1  13589.0  13566.5  13567.4   8556.2       .0       .0       .0

31       .0       .0       .0       .0       .0    216.7  13396.4  13685.1  13544.1  10208.5       .0       .0       .0

32       .0       .0       .0       .0       .0       .0  11884.5  13587.8  13549.2  11913.7       .0       .0       .0

33       .0       .0       .0       .0       .0       .0  10198.0  13727.3  13592.2  13404.4    252.2       .0       .0

25262728 323130298 9 10 11 12 13 14 15 16 17 18 19 20 21 232422

pixel 1pixel -1 pixel 0

y

pixel -2

7 33

pixel 2

Figure 10: The signal averagesSy
i, j of 13 of the pixels in they-projection of cotβ = 1.97 unirradiated barrel

clusters for 27 of the 41 bins in they-hit position after shifting the 9-bin template by±1 and±2 pixels.

first and last pixels of the projections are identified and theclusters are shifted to center them in
the projection arrays (the shifts shifty/x are stored for later use). A set of double pixel flags is also
shifted to track the locations of the expanded double pixels. These flags are then used to modify the
interpolated templates by replacing the contents of the corresponding adjacent single pixels by their
average value. The entire procedure of replacing a single double-pixel with a pair of half-signal
single pixels has exactly the same pull in the final chisquareanalysis as would have a single entry

for a double pixel in the limit that the rms uncertainty on thepixel signals∆Py/x
i scale as

√

Py/x
i .

Note that the second-pass template processing assumes thatall pixels are single size.
A key idea in the template-based algorithm is the recognition that there is important infor-

mation in the absence of information. Since the readout chipis zero-suppressed, all pixels at the
periphery of a cluster must have signals less than the readout thresholdPmin. To force the fitting
procedure to recognize this fact, the two pixels adjacent toeach end of of the projected clusters are
set equal toPmin/2 and they are assigned uncertaintiesPmin/2. These four “pseudo-pixels” improve
the resolution of the algorithm. The use of doubled pseudo-pixels helps to ensure that misaligned
clusters and templates always have large values of chisquare even when the input clusters are small.

Initial Chisquare Minimization: The basic goal of the procedure is to translate the expected
cluster shape until it best matches the observed cluster shape. This is shown in Fig. 11 where the
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y-projection of a cluster is shown as the set of magenta data points. We note that the signal at pixel
+2 falls below the readout threshold and is replaced by a green pseudo-pixel. The basic cluster
shape, encoded in 1/8 pixel bins is shown as the blue histogram. It is clear that translating the
cluster to the left by 2/8 bins would produce much better agreement and suggests that true hit is
likely to be at -2 bins in pixel 0. To allow for less than perfect signal height calibration, we allow
the overall normalization of the template or of the data to float. This is accomplished by evaluating
the following chisquare function for some or all of the template bins,

χ2( j) = ∑
i

(Py/x
i −NjS

y/x
i, j )2

(∆Py/x
i )2

(5.2)

Nj = ∑
i

Py/x
i

(∆Py/x
i )2

/

∑
i

Sy/x
i, j

(∆Py/x
i )2

where the projected pixel uncertainties∆Py/x
i are calculated using equation 5.1 from the pre-stored

parameters and interpolated in cotα and cotβ if appropriate (not needed in second-pass template
generation). The actualχ2 minimization search can be performed in several ways that trade-off
speed for robustness. The slowest and most robust search evaluates equation 5.2 for each of the
41 bins and finds the absolute minimum. A faster and still secure alternative is to limit the search
to the central 25 bins if there are no double-pixels at the ends of the projected cluster and to use
the central 33 bins if there is an end double-pixel. Still faster but having slightly less than optimal
resolution is to search every fourth bin for a minimum and then to expand the search just to the
second nearest neighbors to find another minimum and then to the nearest neighbors of until a
group of 3 consecutive bins has been evaluated and a minimum established. This minimization
scheme is roughly four times faster than the slowest one but relies on the smooth parabolic shape
of theχ2 function. It works well for most clusters with single-size pixels but must be started at the
finer step size for those with double-size pixels.

Position Estimation for Single Pixel Projections: The procedure described to this point is ap-
plied to all cluster projections and always results in the bin number and value of the chisquare
minimum. For single pixel cluster projections, the chisquare value is stored and a simplified po-
sition estimation is performed. The reconstructed position of the hit,yrec or xrec, is determined by
correcting the position given by the pixel center for the centering step (shifty/x) and for the bias

Dy/x
1/2 where the subscript indicates single and double pixels separately,

yrec = ypix−shifty−Dy
k (5.3)

xrec = xpix−shiftx−Dx
k. (5.4)

The bias is determined from the average residual of all one-pixel clusters during the second-pass
template generation. It is also calculated separately for single double-pixel clusters by merging
adjacent rows and columns of the Pixelav events. This is donewith two adjacent pixel pairings
to span all possible situations. The bias calculation automatically corrects single pixel clusters for
Lorentz-drift and for bias caused by radiation damage whichcan cause two-pixel clusters to become
single pixel clusters. The same procedure is also used to calculate the rms spreads in hit residual for
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Figure 11: They-projection of a cluster is shown as the set of magenta data points. The signal at pixel +2
falls below the readout threshold and is replaced by a green pseudo-pixel. The basic cluster shape, encoded
in 1/8 pixel bins is shown as the blue histogram.

single pixel clusters,∆y/x
1/2. These can differ significantly from the usual product of(12)−1/2 and the

pixel pitch because single pixel clusters often occur only in limited regions hit position depending
upon incident track angles and Lorentz drift. The uncertainties on the reconstructed pixel hits,σy

andσx, are taken to be∆y
1/2 and∆x

1/2, respectively, for one-pixel projections.

Note that the quantitiesDy/x
1/2 and∆y/x

1/2 are interpolated in cotβ and cotα in ordinary hit pro-
cessing whereas they are actually generated during second-pass template processing.

Position Estimation for Multiple Pixel Projections: For multiple pixel projections, the bin
number of the chisquare minimum is used to seed a two-bin interpolation calculation to refine
the knowledge of the chisquare minimum in terms of a continuous parameter. This is done by
defining the bins adjacent to the minimum bin as binsl andh as is shown in Fig. 12. The chisquare
function is then redefined in terms of a linear combination ofthe functionsSy/x

i,l andSy/x
i,h . For sim-

plicity, we drop thex/y superscripts from the quantities and then express the chisquare function for
each projection as

χ2 = ∑
i

{Pi −N [(1− r)Si,l + rSi,h]}2

∆P2
i

(5.5)

r =
∑i Pi(Si,h−Si,l )/∆P2

i ∑i PiSi,l /∆P2
i −∑i P

2
i /∆P2

i ∑i Si,l (Si,h−Si,l )/∆P2
i

∑i P2
i /∆P2

i ∑i(Si,h−Si,l )2/∆P2
i − [∑i Pi(Si,h−Si,l )/∆P2

i ]2
(5.6)

whereN is a common normalization factor andr is a dimensionless ratio that is bounded by 0 and
1 and determines the position of theχ2 minimum between the centers of binsl andh. The resulting
estimates of the hit position are given by the following expressions,

yrec = ybin[l ]+ r (ybin[h]−ybin[l ])−shifty (5.7)

xrec = xbin[l ]+ r (xbin[h]−xbin[l ])−shiftx (5.8)
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whereybin[i] andxbin[i] are the x and y positions of bini. The templates corresponding to binsl
andh for the example shown in Fig 11 are shown as the blue solid and red dashed histograms in
Fig. 13. It is clear that a something close to anr = 0.5 combination of the templates will yield the
best fit.

pixel 1pixel -1

y

pixel 0

25262728 323130298 9

minimum χ2

bin l bin h

10 11 12 13 14 15 16 17 18 19 20 21 232422

Figure 12: The definition of binsl andh for the
example shown in Fig 11.

Figure 13: The templates corresponding to binsl
andh for the example shown in Fig 11 are shown
as the blue solid and red dashed histograms.

Residual Corrections: The second template pass also generates and stores final biasand reso-
lution information for each set of track angles and charge bin. In actual operation, the means of
the residual distributions are interpolated in the track angles and are used to correct the final posi-
tion estimates. The interpolated rms widths are used to estimate the uncertainties of the position
estimates. This choice includes any non-Gaussian tails that may be present and represents a better
estimate of the true resolution than the Gaussian fit parameters.

Chisquare Probabilities: The second-pass of the template generation stores the averages of the
minimumy- andx-chiqsquare functions for later use in the calculation of goodness-of-fit probabil-
ities. This single parameter is adequate to reproduce the actual distributions.

5.4 Performance

Unfortunately, very limited beam test data are available for the final pixel geometry and read-
out chip. All of the available data were collected at normal incidence or near normal incidence so
that all clusters have one or two pixel sizes. Therefore, thecharacterization of the template algo-
rithm depends almost entirely upon simulated data. The native performance of template algorithm
was studied by reconstructing large samples clusters generated by Pixelav with random positions
and track angles. This work is summarized in Section 5.4.1. There are a number of effects that
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are more easily studied with the full CMSSW simulation than with the standalone code. These
include the effects of double-size pixels, the effects of detector edges, and the effects secondary
particle production upstream the pixel sensors. These are discussed in Section 5.4.2. The pro-
duction of secondary particles yields cluster shapes that are inconsistent with the track angles and
reconstructed hit coordinates that are not well correlatedwith the position of the primary track.
These can be suppressed by the use of the goodness-of-fit information generated by the template
algorithm. This is discussed in Section 5.4.3. The reader should note that all of the resolution plots
shown in Section 5.4 are root-mean-square (rms) quantitiesand include the effects of tails.

5.4.1 Native Performance

The performance of the template algorithm is compared with that of the standard algorithm
by plotting the rmsy- andx-residuals for a sample of reconstructed barrel clusters generated by
Pixelav as shown in Fig. 14. The residuals are plotted as functions of pseudorapidity for the two
cluster charge (Q) bands 1.5 > Q/Qavg > 1 ( 30% of all clusters) and 1> Q/Qavg ( 70% of all
clusters). The clusters were simulated for an unirradiatedphysical sensor (includes focusing effects
near the n+ implants) operated at 150 V bias. The rms residuals are used to measure the effects
of non-Gaussian tails on the performance of the algorithms.Note that the template and standard
algorithms perform similarly in the lower charge band whichhas less delta-ray activity. Near
η = 0, the projectedy-clusters consist of single pixels and have poor resolution. Nearη = 0.5,
they-projections consist of two-pixel clusters and they-resolution is quite good. It then worsens at
largerη where the template algorithm has approximately 10% better resolution. Thex-resolutions
for the lower charge band improve with increasingη (and increasingQ). The algorithms perform
comparably at lowη and diverge a bit at largeη where the template resolution is about 20%
better than the standard resolution. In the larger charge band where there is increased delta-ray
activity, the template algorithm has significant advantages over the standard algorithm at nearly all
pseudorapidities.

The two algorithms were also compared using a Pixelav-generated sample of clusters from a
heavily irradiated physical sensor (Φ = 6× 1014 neq/cm2) operated at 300 V bias. A calibrated
template is used to reconstruct these events. The Lorentz-shift used by the standard algorithm is
reduced from 121µm to 75.3µm to account for the higher operating bias and the loss of charge
sharing caused by trapping. The resulting rms residuals areplotted versusη in Fig. 15 for the
cluster charge bands 1.5 > Q/Qavg > 1 and 1> Q/Qavg. We note that the resolutions of both algo-
rithms are degraded, but template algorithm is less affected (as it was designed to be). In particular,
the standard algorithm develops largeη-dependent bias in they-direction after irradiation which
is reflected in the significant degradation of they-resolution. The template algorithm has a much
smaller intrinsic bias that is automatically corrected.

5.4.2 Performance in CMSSW

The template algorithm was also tested using samples of events with six 20 Ge V muons gener-
ated by the CMSSW simulation. Special templates corresponding to the simpler sensor physics in
the CMSSW simulation were generated using a highly simplified electric field map that is uniform
and does not include focusing effects near the n+ implants. Although the CMSSW simulation has
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(a) (b)

Figure 14: The rmsy-residuals (a) andx-residuals (b) of a sample of reconstructed barrel clustersfor the
template (blue) and standard (red) algorithms are plotted versus pesudorapidity for the cluster charge bands
1.5 > Q/Qavg > 1 (dashed lines) and 1> Q/Qavg (solid lines). The event sample is generated by Pixelav
and models an unirradiated detector operated at 150 V bias.

(b)(a)

Figure 15: The rmsy-residuals (a) andx-residuals (b) of a sample of reconstructed barrel clustersfor the
template (blue) and standard (red) algorithms are plotted versus pesudorapidity for the cluster charge bands
1.5 > Q/Qavg > 1 (dashed lines) and 1> Q/Qavg (solid lines). The event sample is generated by Pixelav
and models a detector with significant radiation-damage (Φ = 6×1014 neq/cm2) operated at 300 V bias.

a simplified model of the sensor physics, it does correctly model the geometry of the entire track-
ing system and the spatial distribution of vertices. The resolution of the pixel tracking system is
affected by the presence of double-size pixels at readout chip boundaries and by the sensor edges.
Additionally, the CMSSW simulation includes showering by the primary charged particles as they
transit the detector.

This problem is illustrated in Fig. 16 which shows the CMSSW-generated cluster charge distri-
bution for 10 0.25-slices of pseudorapidity. The charge distributions for primary muons are shown
in red and black and the charge distribution for secondary electrons is shown in magenta. Edge
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clusters appear as muons with low cluster charge and become more prominent in the larger-η bins.
The secondary electrons are present in all slices but are particularly pronounced at largeη where
they comprise nearly 20% of all hits. The presence of reconstructed secondary clusters on tracks
is somewhat smaller but still comprises approximately 6% ofhits in the largestη slice. To help
suppress the secondary clusters, the template code stores aminimum chargeQmin for each cotβ
entry. If the cluster charge if found to be less thanQmin, a flag is set. This allows the rejection or
flagging of high-η , low-charge clusters with no loss of efficiency but does not suppress the low-
η secondaries. A more powerful discriminant based upon template probabilities is discussed in
Section 5.4.3.

h_Qb_eta_mup_5

Entries 18011

Mean  5.306e+04

RMS  1.793e+04

Q (el)

0 100 200 300 400

10!0

500

1000

1500

2000

2500

h_Qb_eta_mup_5

Entries 18011

Mean  5.306e+04

RMS  1.793e+04

h_Qb_eta_mup_6

Entries 17199

Mean  6.647e+04

RMS  2.198e+04

Q (el)

0 100 200 300 400

10!0

200

400

600

800

1000

1200

1400

1600

1800

2000

h_Qb_eta_mup_6

Entries 17199

Mean  6.647e+04

RMS  2.198e+04

h_Qb_eta_mup_7

Entries 11719

Mean  8.43e+04

RMS  2.826e+04

Q (el)

0 100 200 300 400

10!0

200

400

600

800

1000

1200 h_Qb_eta_mup_7

Entries 11719

Mean  8.43e+04

RMS  2.826e+04

h_Qb_eta_mup_8

Entries 6828

Mean  1.058e+05

RMS  3.365e+04

Q (el)

0 100 200 300 400

10!0

100

200

300

400

500

h_Qb_eta_mup_8

Entries 6828

Mean  1.058e+05

RMS  3.365e+04

h_Qb_eta_mup_9

Entries 5621

Mean  1.335e+05

RMS  4.25e+04

Q (el)

0 100 200 300 400

10!0

50

100

150

200

250

300

350

h_Qb_eta_mup_9

Entries 5621

Mean  1.335e+05

RMS  4.25e+04

h_Qb_eta_mup_0

Entries 16164

Mean  2.485e+04

RMS    8329

Q (el)

0 100 200 300 400

10!0

1000

2000

3000

4000

5000

h_Qb_eta_mup_0

Entries 16164

Mean  2.485e+04

RMS    8329

+∀

-∀

e+

e-

!

other

h_Qb_eta_mup_1

Entries 17528

Mean  2.632e+04

RMS    9224

Q (el)

0 100 200 300 400

10!0

1000

2000

3000

4000

5000

h_Qb_eta_mup_1

Entries 17528

Mean  2.632e+04

RMS    9224

h_Qb_eta_mup_2

Entries 17148

Mean  2.944e+04

RMS  1.017e+04

Q (el)

0 100 200 300 400

10!0

500

1000

1500

2000

2500

3000

3500

4000

4500

h_Qb_eta_mup_2

Entries 17148

Mean  2.944e+04

RMS  1.017e+04

h_Qb_eta_mup_3

Entries 17587

Mean  3.51e+04

RMS  1.224e+04

Q (el)

0 100 200 300 400

10!0

500

1000

1500

2000

2500

3000

3500

4000

h_Qb_eta_mup_3

Entries 17587

Mean  3.51e+04

RMS  1.224e+04

h_Qb_eta_mup_4

Entries 17823

Mean  4.271e+04

RMS  1.48e+04

Q (el)

0 100 200 300 400

10!0

500

1000

1500

2000

2500

3000

3500 h_Qb_eta_mup_4

Entries 17823

Mean  4.271e+04

RMS  1.48e+04

!=0.125
!=0.375 !=0.625 !=0.875 !=1.125

!=1.375 !=1.625 !=1.875 !=2.125 !=2.375

Figure 16: The charge distribution of clusters (not necessarily trackassociated) in 10 slices ofη for primary
muons (red/black) and secondary electrons (magenta) from asample of CMSSW-generated muon events.

A comparison of the template and standard algorithms operating on a sample of CMSSW-
generated clusters with all effects is shown in Fig. 17. The rms resolutions in the two charge
bands are shown in the standard algorithm (red lines), the template algorithm (blue lines), and the
template algorithm after the low charge clusters have been removed with a simple charge cut (green
lines). Note that the template algorithm still outperformsthe standard one with all effects present
and improves further when the low charge clusters are removed.

5.4.3 Cluster Shape Information

The template algorithm was designed to use the a-priori cluster shape information generated
by Pixelav to optimize the resolution of the hit reconstruction. As part of the process, it minimizes
the chisquare function defined by equations 5.2 and 5.5. Thisalso provides information that can
be used to test the compatibility of the observed cluster shapes with the shapes expected for the
input track angles. In order to interpret the minimum chisquare information, the simple charge-
bin-dependent one-parameter description discussed in Section 5.3.2 was implemented. These are
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Figure 17: The rmsy-residuals andx-residuals of a CMSSW-generated sample of standard- and template-
reconstructed barrel clusters are plotted versus pseudorapidity for the cluster charge bands 1.5> Q/Qavg> 1
and 1> Q/Qavg. The red curves show the standard algorithm, the blue curvesshow the template algorithm
and the green curves show the template algorithm after the removal of the low charge clusters. Note that the
green and blue curves are coincident for the 1.5 > Q/Qavg > 1 band.

interpolated in the track angles and are applied to the problem in the usual way to estimate the
chisquare tail probabilities in each projection,

Proby/x = 1−Γ(χ̄2
y/x/2,χ2

y/x/2) (5.9)

where:Γ is the incomplete Gamma function,̄χ2
y/x is the expected average of the distribution, and

χ2
y/x is the minimum determined from the template algorithm.

There are two distinct uses for the goodness-of-fit information. The first is to validate that the
cluster is likely to have been produced by the transit of primary charged particle. It was shown
in Section 5.4.2 that some of the clusters observed in the CMSSW simulation are produced by
secondary showers. These can have the wrong cluster charge or shape and should not be included
in reconstructed tracks. The template probabilities are a useful tool to reject these. The second
application is to test the compatibility of the cluster withthe track angle hypotheses. In principle,
this could be a powerful constraint in track seeding and is discussed in Section 5.6. In either use
case, it is essential to understand the fraction of clusterslost to they- or x-probability requirements.
These inefficiencies are estimated from a large sample of Pixelav clusters and are plotted as func-
tions of the base 10 logarithm of the minimum probability in Fig. 18. The inefficiencies arising
from the clusters with large delta ray activity in the largest charge band,Q/Qavg > 1.5, are shown
as dashed curves. Since these events comprise only 4.5% of the entire sample, it is clear that poorly
measured events with large delta rays are disproportionately removed by reasonable values of the
minimum probabilities. Furthermore, as one might expect given the factorization of they- and
x-projections, the inefficiencies associated withy- andx-probabilities are largely independent. The
total inefficiency of separatey-probability andx-probability requirements is quite close to the sum
of the inefficiencies of the individual requirements.

The utility of a minimum probability requirement is illustrated in Fig. 19 which shows the same
CMSSW-generated cluster charge distributions that were shown in Fig. 16 after the application
of the requirements Proby > 10−3, Probx > 10−3. We note that the secondary electron induced
clusters are eliminated at largeη and are suppressed at smallerη . The low charge distribution of
edge clusters is also removed. The particular probability requirements shown in Fig. 19 are not
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Figure 18: The inefficiencies ofy- (blue) andx-probability (red) are shown as functions of the base 10
logarithm of the minimum probability as solid lines. The inefficiencies arising from the loss of poorly
measured clusters in the largest charge band,Q/Qavg > 1.5, are shown as dashed curves.

optimized. It is clear that one would like to remove hits due to secondaries at the earliest stage of
track finding. This suggests that the probabilities should be used in track seed finding and that any
probability cuts must be optimized for that purpose. This isdiscussed in Section 5.6.
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Figure 19: The charge distribution of clusters (not necessarily trackassociated) in 10 slices ofη for primary
muons (red/black) and secondary electrons (magenta) from asample of CMSSW-generated muon events
after the application of minimumy-probability andx-probability requirements of 10−3.
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5.5 Tuning and Calibration

The template algorithm is based upon the premise that the Pixelav simulation can be tuned to
accurately describe the pixel sensors as they are graduallydamaged by exposure to the large LHC
radiation field. This premise rests upon the demonstrated success in the modeling of charge collec-
tion profiles measured with test sensors irradiated to several fluences [12]. The parameters of the
double-junction model were tuned by hand until the simulation reproduced the profiles measured
at the fluenceΦ0 = 6×1014neq/cm2 as is shown in Fig. 5. Although this was extremely tedious,
it was also shown that the parameters of the model could then be scaled to lower fluences using
separate scale factors for the acceptor densityNA, donor densityND, and trapping ratesΓe/h:

NA(Φ) = RA(Φ)NA(Φ0), ND(Φ) = RD(Φ)ND(Φ0), Γe/h(Φ) = RΓ(Φ)Γe/h(Φ0) (5.10)

where the scale factorsRare given by the following expressions,

RΓ(Φ) =
Φ
Φ0

, RA(Φ) = RΓ(Φ)(1+ α), RD(φ) = RΓ(Φ)(1−α) (5.11)

and whereα depends upon the fluence. The scale factors that were determined at the fluences
2× 1014neq/cm2 and 0.5× 1014neq/cm2 are plotted in Fig. 20. These provide essentially a one-
parameter prescription to tune the model to intermediate fluences and should greatly expedite the
calibration process.

Figure 20: The scale factorsRA, RD, andRΓ as defined in equations 5.10 and 5.11 are plotted as functions
of fluence.

The actual calibration procedure is to repeat the beam test measurements in-situ in CMS.
This requires that samples of large-η tracks and pixel clusters be recorded at a series of pixel bias
voltages. It has already been shown [14] that due to displaced primary vertices, it is possible to
acquire such samples even in the central barrel modules. In principle, the in-situ measurement
could acquire large statistics in only a few hours of dedicated operation at several bias voltages.
Since it will require several years of operation to reach fluences comparable toΦ0, the calibration
procedure will not have to be performed frequently. However, because the readout chip is zero-
suppressed, the very useful information in the small tails of the charge collection profiles will not
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be available. This is illustrated in Fig. 21 which shows the effect of the readout threshold upon
the charge collection profile that was measured in the beam test with an un-suppressed prototype
readout chip. The essential tail information is visible at only one bias setting. This implies that
finer, carefully-targeted voltage scans will be required to calibrate the sensor model.
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Figure 21: The measured charge collection profiles at a temperature of−10◦C and bias voltages of 150 V,
200 V, 300 V, and 450 V are shown as solid dots for a fluence of 5.9×1014 neq/cm2. The two-trap double
junction simulation is shown as the solid histogram in each plot and the shaded region shows the effect of
the readout threshold. Any signal dot inside the shaded region will be invisible in-situ in CMS.

Unfortunately, the template calibration cannot be automated. The calibration procedure will
always require some iteration and hand adjustment of the modeling parameters (the complexity of
the model tuning is described in [12]). We are planning to develop a suite of CMSSW software
packages to facilitate this. After the implementation of the template-based simulation package in
CMSSW (see Section 6) it will be possible to develop this software using data from simulated
irradiated sensors.

5.6 Track Seeding

The sensitivity of the template algorithm to the cluster shapes was discussed in Section 5.4.3
in the context of identifying secondary electron backgrounds. The template probabilities test the
consistency of the observed cluster shapes with the shapes expected for the input angle hypotheses.
This technology can also be used to test the consistency of the observed shapes with the angle
hypotheses. Pixel doublets and triplets are used to seed theKalman Filter track finding algorithm.
Each pair of pixel hits defines theβ -direction of a possible track and each triplet of hits defines
the α-direction of a possible track. The cluster shapes crudely measure both of these angles and
can, in principle, be used to “validate” possible track seeds. This idea is sketched schematically in
Fig. 22 which shows (not to scale) they- andx-projections of a possible triplet of pixel hits. We
note that the lengths of both cluster projections in the middle layer are inconsistent with the triplet
hypothesis. Rejecting inconsistent track seeds before theKalman Filter is invoked can significantly
reduce the track-finding time.

The development of a template-based “seed cleaner” is in progress. The Modified Pixel Seeder
processes pixel doublet seeds generated by the Global PixelSeeder by applying the template al-
gorithm to both pixel hits and by requiring that they-probabilities exceed 10−3. The results of
the application of the seeder and the seeder/cleaner combination to a sample of 750 simulatedtt̄
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flipped

y-projection x-projection

Figure 22: A schematic diagram of a pixel triplet seed and a track hypothesis. Note that the projected sizes
of the clusters (shaded green) in the outer layers are consistent with the track angles whereas the projected
sizes of the cluster (shaded red) in the middle layer are not consistent with the track angles.

events are summarized in Table 1. The cleaner reduces the number of seeds by more than a factor
of two and reduces the tracking time by almost a factor of two.Taking into account the additional
overhead of the template algorithm, the total time for seeding and tracking is reduced by 40%. The
application of template-based procedure loses about 1.6% of the tracks from the original sample.
The quality of the lost tracks is unknown and is currently under study.

Table 1: Comparison of the normal pixel seed builder (Global Pixel Seeder) and a template-based seed
cleaner (Modified Pixel Seeder) for a sample of 750 simulatedtt̄ events.

Quantity Global Pixel Seeder Modified Pixel Seeder

Total Seeds (103) 1085 476
Total Tracks (103) 37.6 37.0

Seeding Time 0.13 s/event 0.19 s/event
Tracking Time 1.80 s/event 0.96 s/event

Total Time 1.92 s/event 1.15 s/event

The use of the template algorithm for seed cleaning has the additional advantage that it can be
calibrated to match the degrading performance of the pixel detector. At the very least, this should
keep the efficiencies of the seed-cleaner reasonably constant in time even if the rejection power
for poor seeds declines. In actuality, the converse may be true. As the detector ages, the template
algorithm will acquire the ability to distinguish between positive and negative cotβ due to the
asymmetry of charge trapping. This may actually improve theability to reject some backgrounds.
The use of the template algorithm to validate pixel seeds should also improve the resolution of
track parameters even in the first pass of the track finding since it would automatically reject non-
primary particles and would improve the resolution of the reconstructed hits used in the first-pass
track fitting.

6. Template-Based Simulation Algorithm

Radiation damage will significantly degrade the performance of the pixel system during its

23



P
o
S
(
V
e
r
t
e
x
 
2
0
0
7
)
0
3
5

A new technique M. Swartz

useful lifetime. It is obviously desirable to reproduce theradiation-induced changes in detector
response in the CMSSW simulation. The modeling of irradiated sensors by the vectorized Pixelav
code requires approximately 1.5 s per hit on a 2.5 GHz G5 processor and more than 3 s per hit on a
2.8 GHz Xeon processor. This code is obviously much too slow to be integrated into the CMSSW
pixel simulation. It is clear that another approach is required. An obvious idea is to try to modify the
clusters generated by the standard CMSSW simulation to exhibit the effects of radiation-damage by
using the information stored in the templates. In principle, this is a straightforward procedure. It is
complicated by the fact that the templates store one-dimensional projections of the two-dimensional
clusters but the simulation generates two-dimensional clusters. The following sections describe a
technique that can modify the 2-D clusters to achieve the changes in the 1-D projections predicted
by the ratios of the templates for the generated and desired events.

The template-based simulation technique has the advantages that it utilizes the same calibra-
tion and modeling developed for the reconstruction therebyeliminating a separate calibration for
the simulation and it ensures that the simulation and reconstruction processes remain synched as
the detector ages.

The template-based simulation technique described in thissection is less developed than is
the template-based reconstruction technique but a proof ofprinciple has recently been developed
and tested. This C++ procedure is analogous to the reconstruction procedure but is not yet fully
implemented in the CMSSW simulation.

6.1 Description of the Template-Based Simulation Algorithm

The template-based simulation algorithm re-weights individual pixel signals to modify the
one dimensional projections as suggested by the ratios of the one-dimensional templates. This is
possible because the number of pixels in a typical clusterN is usually (97% of all cases) less than
or equal to the number constraintsM provided by the one-dimensional projections. The following
algorithm is designed to identify and re-weight the “core” of the cluster. Additional pixels from
delta rays are treated in an ad-hoc manner. The procedure retains the fluctuations inherent in the
generated clusters but modifies the average projected cluster shapes as suggested by the template
information.

Cluster Preparation: The inputs to the algorithm are the CMSSW-generated two-dimensional
cluster, track angles, and hit position. The first step is to prepare the input cluster based upon
information from templates corresponding to the physics model of the CMSSW simulation. Using
the generated track angles and hit position,y- andx-templates corresponding to the “generating”
CMSSW model are interpolated and labeledGy

i , Gx
j . The columns and rows having template signal

larger than 50% of the readout threshold define the “inside” region where the re-weighting problem
will be formulated. The pixels of the CMSSW input cluster arethen categorized and sequentially
labeled as insideIk or outsideOl pixels as shown in Fig. 23. In order to avoid the effects of large
signal fluctuations on the re-weighting procedure, the inside signals are then truncated at the same
angle-dependent maximum signalImax(cotβ ) used in the reconstruction procedure. The truncated
signalsĨk are then summed intoy- andx-projectionsPy

i andPx
j as shown in Fig. 24.

Formulation of Re-weighting Problem: The next step is to use the input track angles and hit
position to interpolate they- andx-templates,Ty

i andTx
j , which correspond to the “target” physical
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Figure 23: The categorization of the insideIk and
outsideOl pixels in the input cluster .

Figure 24: The truncated inside pixels are summed
into y- andx-projections.

model. These templates would normally correspond to the Pixelav model of an irradiated detector.
The goal of the procedure is to find theN pixel weightsrk that modify the truncated pixel signals
so that the re-weighted signalsrkĨk have they- andx-projectionsPy

i Ty
i /Gy

i andPx
j T

x
j /Gx

j as shown
in Fig. 25.
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Figure 25: Formulation of the pixel re-weighting problem.

The cluster re-weighting problem is therefore a linear problem inN unknownr i with M condi-
tions (M is the sum of the numbers of columns and rows in the inside region) and can be expressed
in matrix form

A · r = b (6.1)

where theM×N matrix A is composed of truncated signalsĨk, theN-vectorr = (rk), and theM-
vectorb contains the re-weighted projectionsPiTi/Gi. Unfortunately, standard techniques for the
solution of this problem like Singular Value Decomposition(SVD) often yield unphysical (nega-
tive) values for the weights. Note however, that whenM > N, SVD actually minimizes the least
square difference|A · r− b|2. Clearly, we would like to do exactly this but with the additional
constraints that allrk be positive. This is a standard problem in the field known as Quadratic Pro-
gramming. Our problem can be cast into standard form by subtracting a constant from the least
square difference and minimizing the new functionL,

L = |A · r−b|2−|b|2 = rT ·AT ·A · r−2bT ·A · r = rT ·Q · r+2cT · r (6.2)
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where theN×N symmetric matrixQ is given byQ = AT ·A and theN-vector c is given by
c = −AT ·b. For this study, were able to find a non-commercial code written mostly in C++ called
OOQP for Object-Oriented Quadratic Programming [15]. It isavailable under a GPL-like license
from the University of Chicago and relies upon the BLAS3 linear algebra package [16] and also
upon the fortran-coded MA27 sparse linear solver from the HSL archive [17].

Note that double pixels are treated differently in the re-weighting procedure than in the re-
construction procedure. The expansion of double pixels into pairs of single-size pixels simplified
the coding of the reconstruction procedure. A similar treatment would only complicate the re-
weighting procedure. Therefore, the generated and target templates are modified to model the
double pixels by merging appropriate adjacent columns or rows. This is done starting at the central
“struck” pixel and proceeds in both directions away from thecentral pixel.

Final Re-Weighting The actual re-weighting of the cluster depends upon the integersM andN.
If M is larger than or equal toN (97% of all cases), OOQP is used to solve for r and the weights
are applied to the un-truncated inside pixels. Any outside pixels are reweighted using the weight
applied to the nearest inside pixel. This procedure is illustrated in Fig. 26. If OOQP fails to find
a solution (approximately 0.15% of all cases) or ifM is less thanN, a simpler re-weighting is
peformed. If the number of columns is equal to or larger than the number of rows (normal case),
the columns of cluster are re-weighted using the weightsTy

i /Gy
i . If the number of columns is less

than the number of rows, the rows are reweighted using the weightsTx
j /Gx

j .
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r8O1
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x

y

Figure 26: Application of weights to un-truncated inside pixels and outside pixels.

6.2 First Tests: Performance and Speed the Template-Based Simulation Algorithm

The simulation algorithm was tested using clusters generated by Pixelav with a simplified
electric field map corresponding to the CMSSW simulation. They were re-weighted to model a
sensor that was irradiated to a fluence of 6×1014 neq/cm2. The re-weighted clusters were recon-
structed using the template algorithm and the residuals were compared with those produced by
reconstructing full Pixelav simulations of the irradiatedsensor. Initial testing showed that attempts
to re-weight these CMSSW-like events lead to residual distributions with offsets in the 10-11µm
range. It was noted that the input clusters were generated assuming that the detector was oper-
ated at the nominal 150 V bias whereas the output template corresponded to an irradiated sensor
operated at 300 V bias. The different bias voltage leads to a different average Lorentz drift and
therefore different typical topologies of the output clusters. To overcome this problem, another set
of CMSSW-like events was generated with Pixelav that corresponded to the uniform field approx-
imation for a detector operated at 300 V bias. The Lorentz angle was reduced from 23◦ to 16.1◦
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making the topologies of the generated clusters closer to those of the irradiated detector [5]. Using
the new event stream and its corresponding template, the residual offsets of the re-weighted and
reconstructed events were reduced to values less than 1µm. The resulting rms residuals from this
second attempt are compared with those from the full Pixelavsimulation of the irradiated sensor
as shown in Fig. 27. The local y (global z) residuals for the two simulations are very similar. The
local x (globalφ ) residuals are similar but exhibit a somewhat differentη dependence. It is clear
that the simulation of irradiated sensors will require thatthe parameters of the CMSSW simulation
be “matched” with individual templates to achieve the best results.

(a) (b)

Figure 27: The rmsy-residuals (a) andx-residuals (b) of Pixelav-generated (blue) and reweightedCMSSW-
like (red) samples of reconstructed barrel clusters using the template algorithm are plotted versus pesudo-
rapidity for the cluster charge bands 1.5 > Q/Qavg > 1 (dashed lines) and 1> Q/Qavg (solid lines). Both
samples model an irradiated detector (Φ = 6×1014 neq/cm2) operated at 300 V bias.

The speed of the algorithm is dominated by the time needed to solve the quadratic program-
ming problem. As tested on a 2.5 GHz G5 processor, the simulation can process approximately
3300 clusters per second which yields 0.3 ms/cluster. The CMSSW digitizer has a tested speed of
12 ms/cluster on a 2.5 GHz Xeon processor [18]. Even allowingfor a 10-20% difference in pro-
cessor speed and the overhead from the unwritten CMSSW interface, the speed of the re-weighting
procedure is easily sufficient for use in CMSSW and should be much faster than the 1.5(3) s/cluster
speed of the vectorized Pixelav simulation operating on available G5(Intel) processors.

6.3 Future Development

This technique is currently the only alternative for the simulation of the Pixel system after it
has become radiation-damaged. We regard the results shown in Fig. 27 as an encouraging proof
of principle, but we intend to study and develop the algorithm further before final implementation.
Additionally, the CMSSW interface for the template simulation has not yet been designed. Since
the algorithm reweights already-generated clusters, there are a number of possible implementation
schemes. It could be invoked from within the pixel digitizer. This has the advantage that it could
be applied before the response of the readout electronics and electronic noise are simulated. It is
also possible to create an independent module that could reweight “noisy” clusters after generation
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and before clusterization. The performance of this scheme should be slightly worse than the first,
but it simplifies the implementation.

7. Conclusions

This note describes new techniques for the reconstruction/validation and the simulation of
pixel hits. The techniques are based upon the use of pre-computed projected cluster shapes or
“templates”. A detailed simulation that successfully described the profiles of clusters measured
in beam tests of radiation-damaged sensors is used to generate the templates. Although the re-
construction technique was originally developed to optimally estimate the coordinates of hits after
the detector became radiation damaged, it also has superiorperformance before irradiation. The
technique requires a priori knowledge of the track angle which makes it suitable for the second in
a two-pass reconstruction algorithm. However, the same modest angle sensitivity allows the algo-
rithm to determine if the sizes and shapes of the cluster projections are consistent with the input
angles. This information may be useful in suppressing spurious hits caused by secondary particles
and in validating seeds used in track finding and has the potential to significantly increase the speed
of track finding in the offline reconstruction. The use of the template algorithm at the seeding level
would also remove spurious hits from tracks and might further reduce resolution tails.

The implementation of the template reconstruction algorithm in CMSSW is well advanced. It
can already be used to reconstruct simulated data. A suite ofcalibration tools needs to be devel-
oped and some additional but straightforward implementation enhancements are needed before the
template algorithm could be used to reconstruct real data. Investigations of its use in seeding and
track finding are just beginning.

Finally, a new procedure that uses the templates to reweightclusters generated by the CMSSW
simulation was described. The first tests of this technique are encouraging and when fully imple-
mented, the technique will enable the fast simulation of pixel hits that have the characteristics of the
much more CPU-intensive Pixelav hits. In particular, it maybe the only practical technique avail-
able to simulate hits from a radiation damaged detector in CMSSW. Additional work is required to
finish the algorithm development and to integrate it into CMSSW.
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