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The electron’s anomalous magnetic moment is computed in a light-cone Hamiltonian approach,
with Pauli-Villars (PV) particles as UV regulators. The eigenstate is obtained by diagonalizing a
matrix that represents the discretization of 48 coupled integral equations for the one-photon/one-
electron wave functions. This generalizes earlier work on a one-photon truncation and extends
the eigenstate expansion to two photons. In addition to the physical particles, one PV electron
flavor and two PV photon flavors are included in the basis. The second PV photon allows the
solution to have a very smooth, slowly varying dependence on the PV electron mass. This in turn
allows the numerical approximation to use smaller mass ratios, which reduces round-off errors.
An intermediate calculation that retains the one-photon contribution and the two-photon self-
energy contributions yields a much improved result. Where the older, one-photon calculations of
the anomalous moment by S.J. Brodsky et al. differed by 14% from the correct value, inclusion
of the self- energy contribution reduces the discrepancy to less than 2%.
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1. Introduction

The anomalous magnetic moment of the electron is predicted by perturbative QED to very high
precision as [1] ae ≡ (g− 2)/2 = α

2π − 0.328478965
(α

π
)2

+ 1.17611
(α

π
)3 − 1.434

(α
π
)4. This

is in excellent agreement with experiment and provides an important check for nonperturbative
methods. Here we describe progress toward such a check for a light-cone Hamiltonian method that
uses Pauli–Villars (PV) particles as the ultraviolet regulators. The electron eigenstate is obtained
within a truncated basis, and the anomalous moment is computed from the wave functions. The
one-photon truncation has been solved analytically [2]. The new work involves inclusion of two-
photon states, as well as additional analysis of the one-photon truncation at finite PV masses.

The regularization is done by including enough PV particles in the Lagrangian. The formula-
tion is then covariant and, at least for QED, gauge invariant. These symmetries are then broken by
the truncation of the Fock-state expansion, but the effect of the breaking is expected to be small.

The existence of a meaningful Fock-state expansion, with well defined wave functions as the
coefficients, is made possible by the choice of light-cone quantization [3]. The vacuum is then
simple and the projection of the lower eigenstates onto the higher Fock sectors can be small. This
is not the case for equal-time quantization [4].

Usually in QED, light-cone gauge is chosen, to simplify constraints; however, in this case,
three PV electrons were found to be not enough to properly regulate the theory [2]. There was a
strong dependence on PV masses and a lack of equivalence between light-cone perturbation theory
and standard covariant perturbation theory. To work in this gauge requires an additional PV photon
and higher-order derivative counterterms [2].

In Feynman gauge, one PV electron and one PV photon are in principle sufficient at our level
of truncation. The PV interactions can be arranged to cancel the usual instantaneous electron
interactions and to simplify the fermionic constraint equations. This worked well for very large
PV electron masses [2]. However, if the infinite PV-electron-mass limit is not approached, there
remains some strong dependence on the PV photon mass, which can be eliminated by including
a second PV photon. This is important for the two-photon truncation, which must be handled
numerically and is vulnerable to large round-off errors in the quadratures when the PV electron
mass is very large.

The renormalization is handled by requiring the mass M of the lowest eigenstate in the single-
electron sector to be the physical mass of the electron, me. This fixes the bare-mass parameter
m0 of the Lagrangian as a function of the PV masses. The coupling α is unrenormalized in our
truncation, because there are no antifermion contributions. In practice, the eigenvalue problem is
solved at fixed M = me with α obtained from the eigenvalue, and m0 is determined by requiring α
to take the correct physical value.

This approach differs from that of sector-dependent renormalization [5, 6], where the bare
parameters are given different values in each Fock sector. In [6] this has yielded wave functions
that are not well defined. The probability of the lowest Fock sector becomes negative if the PV
masses are too large, and the expectation value for the number of physical photons is infinite for
any choice of PV masses. These difficulties are overcome to some extent by only computing
quantities with respect to some external probe and separately renormalizing the external coupling.
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The limitation to finite PV masses occurs also in our approach, due to uncancelled divergences [2],
but the wave functions always yield probabilities between zero and one.

2. Feynman-gauge light-cone QED

The Lagrangian of PV-regulated QED in Feynman gauge is

L =
2

∑
i=0

−1
4(−1)iFµν

i Fi,µν −
1
2

2

∑
i=0

(−1)i (∂ µAiµ
)2

+
1

∑
i=0

(−1)iψ̄i(iγµ∂µ −mi)ψi−eψ̄γµψAµ , (2.1)

where

Aµ =
2

∑
i=0

√

ξiAiµ , ψ =
1

∑
i=0

ψi, Fiµν = ∂µAiν −∂νAiµ . (2.2)

The subscript i = 0 denotes a physical field and i = 1 or 2 a PV field. The constants ξi satisfy the
following constraints:

2

∑
i=0

(−1)iξi = 0,
2

∑
i=0

(−1)iξiµ2
i ln µi

m1
= 0, (2.3)

with ξ0 = 1. The first constraint guarantees that Aµ is a zero-norm field. The second arranges the
cancellation of the leading dependence on the PV electron mass, m1.

The coupling of the two zero-norm fields Aµ and ψ as the interaction term reduces the fermionic
constraint equation to a solvable equation without forcing the gauge field A+ to zero. For the null
combination ψ0 + ψ1 that couples to A+ the constraint on the nondynamical components is the
same as the constraint for a free fermion.

The regularization scheme does have the disadvantage of breaking gauge invariance, through
the presence of “flavor” changing currents where a physical fermion can be transformed to a PV
fermion or vice versa. However, the breaking effects disappear in the limit of large PV fermion
mass [2], because the physical fermion cannot make a transition to a state with infinite mass.

Without antifermion terms, the result for the Hamiltonian is [2]

P− = ∑
i,s

∫

d p
m2

i + p2
⊥

p+
(−1)ib†

i,s(p)bi,s(p)+∑
l,µ

∫

dk
µ2

l + k2
⊥

k+
(−1)lεµa†

lµ(k)alµ(k) (2.4)

+ ∑
i, j,l,s,µ

∫

d pdq
{

b†
i,s(p)

[

b j,s(q)V µ
i j,2s(p,q)+b j,−s(q)U µ

i j,−2s(p,q)
]

√

ξla
†
lµ(q− p)+h.c.

}

,

where the vertex functions are given in [2]. We work in the frame where the total ~P⊥ is zero. The
eigenstate with total Jz = ± 1

2 then has the following Fock-state expansion:

|ψ±(P)〉 = ∑
i

zib
†
i±(P)|0〉+ ∑

i jsµ

∫

dkCµ±
i js (k)b†

is(P− k)a†
jµ(k)|0〉 (2.5)

+ ∑
i jksµν

∫

dk1dk2Cµν±
i jks (k1,k2)

1
√

1+δ jkδµν
b†

is(P− k1 − k2)a
†
jµ(k1)a

†
kν(k2)|0〉+ . . . ,

The wave functions Cµ±
i js are by determined the mass eigenvalue problem P+P−|P〉 = M2|P〉.

As it stands, the eigenstate can lead to unphysical answers, because the PV contributions have
negative norm. We extract a physical state by means of a projection onto the physical subspace [7].
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The projection is accomplished by expressing Fock states in terms of positively normed creation
operators a†

0µ , a†
2µ , and b†

0s and the null combinations a†
µ = ∑i

√

ξia
†
iµ and b†

s = b†
0s + b†

1s. The b†
s

particles are annihilated by the generalized electromagnetic current ψ̄γµψ; thus, b†
s and a†

µ create
unphysical contributions that are dropped. The anomalous moment is computed only after making
this projection.

3. Solution of the eigenvalue problem

In the one-photon truncation, the wave functions satisfy the coupled integral equations

[M2 −m2
i ]zi =

∫

dk ∑
j,l,µ

√

ξl(−1) j+lεµ
[

P+V µ∗
ji+(k,P)Cµ+

jl+(k)+P+U µ∗
ji+(k,P)Cµ+

jl−(k)
]

(3.1)

and
[

M2 − m2
i + k2

⊥
(1− y)

− µ2
l + k2

⊥
y

]

Cµ±
il± (k) =

√

ξl ∑
j

(−1) jz jP
+V µ

i j±(k,P), (3.2)

[

M2 − m2
i + k2

⊥
(1− y)

− µ2
l + k2

⊥
y

]

Cµ±
il∓ (k) =

√

ξl ∑
j

(−1) jz jP
+U µ

i j±(k,P). (3.3)

The wave functions Cµ±
il± are found explicitly in terms of the bare amplitudes zi, by inverting the

second set of equations, and then eliminated from the first set, to obtain, with use of the definitions
of the vertex functions [2],

(M2 −m2
i )zi = 2e2 ∑

j

(−1) j [M2z jJ̄ +miz jm j Ī0 (3.4)

−2Mz j(mi +m j)Ī1] .

Here

Īn =
∫

dydk2
⊥

16π2 ∑
jl

(−1) j+lξl

M2 − m2
j+k2

⊥
1−y − µ2

l +k2
⊥

y

(m j/M)n

y(1− y)n , (3.5)

J̄ =
∫

dydk2
⊥

16π2 ∑
jl

(−1) j+lξl

M2 − m2
j+k2

⊥
1−y − µ2

l +k2
⊥

y

(m2
j + k2

⊥)/M2

y(1− y)2 . (3.6)

The form of Eq. (3.4) matches that of the equivalent eigenvalue problem in Yukawa theory [7],
with M used as the mass scale instead of µ0 and with the replacements g2 → 2e2 and I1 →−2Ī1.
Consequently, the solution for the one-photon truncated eigenvalue problem is

α± =
(M±m0)(M±m1)

8πM(m1 −m0)(2Ī1 ± Ī0)
, z1 =

M±m0
M±m1

z0, (3.7)

with z0 determined by normalization.
The plot in Fig. 1 shows α±/α as functions of m0. The α− branch is the physical choice,

because the no-interaction limit (α− = 0) corresponds to the bare mass m0 becoming equal to the
physical electron mass. If the PV electron has a sufficiently large mass, the value of m0 that yields
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Figure 1: The two solutions of the one-photon eigenvalue problem, for PV mases m1 = 1000me, µ1 = 10me,
and µ2 = ∞. The horizontal line shows where α± = α . The α− branch corresponds to the physical choice,
but with m0 less than me.
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Figure 2: The anomalous moment of the electron in units of the Schwinger term ( α
2π ) plotted versus the PV

photon mass, µ1, for a few values of the PV electron mass, m1, with the second PV photon mass, µ2, set to
infinity.
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α− = α is less than me. In this case, the integrals Ĩn and J̃ contain poles for j = l = 0 and are
defined by a principal-value prescription [2].

When the second PV photon is removed via the µ2 → ∞ limit, the results for the anomalous
moment have a very strong dependence on the PV electron mass m1, as can be seen in Fig. 2. This
strong dependence arises from the sensitivity of the anomalous moment integral to the masses of
the constituents, in particular the bare electron mass m0. The leading finite-m1 correction to the
bare electron mass is of the form µ2

1 ln(µ1/m1)
8π2mem1

. This requires m1 to be much larger than µ2
1/me. Such

behavior comes from the contribution of Ĩ1 to the relationship between m0 and α in (3.7). Relative
to the value Ĩ1(∞) at infinite m1, we have

Ĩ1 ' Ĩ1(∞)+
2

∑
j=1

ξ j(−1) j µ2
j ln(µ j/m1)

8π2mem1
. (3.8)

The second constraint (2.3) on the coupling factors ξ j reduces this leading correction to zero.
In the two-photon truncation, we can eliminate the three-body wave function and the bare-

fermion amplitudes to obtain 48 coupled equations for the two-body wave functions

−2π
α

f µ±
i js (y,q⊥) =

Ii j,1−i(y,q⊥)

1− y
η1−i, j(y,q⊥) f µ±

1−i, js(y,q⊥) (3.9)

+ ∑
i′ j′s′µ ′

εµ ′
∫ 1

0
dy′dq′2⊥J(0)µµ ′

i js,i′ j′s′(y,q⊥;y′,q′⊥)ηi′ j′(y
′,q′⊥) f µ ′±

i′ j′s′(y
′,q′⊥)

+ ∑
i′ j′s′µ ′

εµ ′
∫ 1−y

0
dy′dq′2⊥J(2)µµ ′

i js,i′ j′s′(y,q⊥;y′,q′⊥)ηi′ j′(y
′,q′⊥) f µ ′±

i′ j′s′(y
′,q′⊥),

where Ii jk is the self-energy contribution and J(n)µµ ′

i js,i′ j′s′ is the kernel with n intermediate photons. The
diagonal self-energy contribution is included in the redefined wave functions

f µ±
i js (y,q⊥ = Cµ±

i js (y,q⊥)/(M2ηi j(y,q⊥)), (3.10)

with
ηi j(y,q⊥) =

y(1− y)

q2
⊥ + y(m2

i + Ii ji(y,q⊥)+(1− y)µ2
j − y(1− y)M2 . (3.11)

The full solution of this eigenvalue problem is in progress. As an intermediate step, we can
solve it with only the two-photon self-energy corrections, that is, with J(2) set to zero. The solution
is analytic up to the evaluation of certain integrals, which can be done numerically with some care
and effort, especially with respect to poles, to an accuracy of order 1%. The anomalous moment
computed from this solution is shown in Fig. 3, along with the one-photon-truncation results. We
see that, although the one-photon result differs by ∼ 14% [2], our new result, the filled circles
of Fig. 3, is consistent with perturbative QED, showing only the variations expected from the
numerical errors in calculating the integrals.
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Figure 3: Same as Fig. 2 but with µ2 =
√

2µ1 and with inclusion of the effect of keeping the two-photon
self-energy corrections.
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