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LC gauge singularities Pierre Grangé

1. Introduction

The light-cone (LC) gauge is one of the most frequently used gauge choices in perturbative
QCD calculations and in non-perturbative light-front approaches. In these latter cases, besides
the conveniences already known from perturbative studies -built-in transversality of the Green’s
functions, ghost-free procedure etc...- the LC-gauge turns out to simplify greatly the treatment
of constraints inherent to LC dynamics. However difficulties and inconsistencies remain in LC-
quantization of gauge fields. They have to do with specific spurious singularities appearing in the
LC-gauge-field propagator. These questions are most carefully discussed in the essential books of
A.Bassetto, G. Nardelli and R. Soldati [1] and of G. Leibbrandt [2], where additional references
can be found. More recently A. Das et al. [3] examined the effect of residual gauge fixing on the
large distance behaviour of the propagator with Mandelstam-Leibbrandt [ML] prescription for the
spurious singularities. In [1] it is emphasized that in order to give a meaning to powers of these
spurious singularities the distributional nature of Green’s functions has to be taken into account, that
is these distributions act on a space of test functions (known as Besov space) suitably vanishing
at the singularities. Each vertex of a diagram carries an adiabatic switching test function which
ultimately tends to unity at the end of the calculations. Our purpose here is to show that the
practical implementation of these ideas is precisely accomplished with the treatment of gauge fields
as operator-valued distributions (OPVD) acting on very specific test functions [4 – 6]. In the first
section OPVD gauge fields are introduced and the photon propagator is derived in the LC-gauge. In
the next section the general features of the treatment of singular distributions with partition of unity
test functions is recalled and applied to the propagator. The third section presents a test case where
an infinite resummation in the LC-singularities gives back the known exact result. This example
also brings some light on the Mandelstam-Leibbrandt prescription for the LC-singularity in the
general context of the present extension of singular distributions. In the last section residual gauge
tansformations and singularities in the photon propagator are discussed from the point of view that
the original light cone vector n and its dual n∗−((n∗)2 = 0,n.n∗ = 1)− play a completely symmetric
role for the implementation of the gauge conditions. Some general comments and perspectives are
finally given in the closing section.

2. Propagator with OPVD gauge fields in the LC-gauge

An operator-valued distribution defines an operator functional with respect to a C∞ test func-
tion ρ(x), with compact support. For the gauge field this operator functional writes

Aµ(ρ) ≡< Aµ ,ρ >=
∫

d(D)yAµ(y)ρ(y).

The translated functional is a well defined object such that

TxAµ(ρ) =< TxAµ ,ρ >=< Aµ ,T−xρ >≡ Aµ(x) =
∫

d(D)yAµ(y)ρ(y− x).

Under a gauge transformation of the original Aµ(y) Aµ(x) get transformed as

A′µ(x) = Aµ(x)+
∫

d(D)y∂ µ
y Λ(y)ρ(x−y) = Aµ(x)+∂ µ

x

∫
d(D)yΛ(y)ρ(x−y) = Aµ(x)+∂ µ

x ΛΛ(x).
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Aµ(x) is then taken as the physical field from which the propagator is constructed.
The propagator Gµν(x) is formed equivalently1 either by the time-ordered product of two Aµ or by
the convolution of the time-ordered product of two Aµ fields with two test functions and the use of
their F -transforms ( f = F (ρ))

Gµν(x) =
∫

d(D)zd(D)y′ < 0|T [Aµ(z+ x)Aν(y′)]|0 > ρ(z)ρ(y′),

=
∫

d(D)zd(D)y′Gµν(z+ x− y′)ρ(z)ρ(y′) = ı
∫

d(D)k
(2π)D

exp[−ık.x]

k2 + ıε
Dµν(k) f 2[k2

0,~k
2].

In the "usual" LC gauges with n2 = 0, Dµν(k) =−gµν +
nµ kν+nν kµ

n.k − nµ nν
(n.k)2 k2. In the absence of test

functions the common wisdom is to treat the singularity in 1
n.k with the ML prescription. It is worth-

wile to recall that such a prescription is compatible with the path integral formulation [7] but not
imposed by it [1]. Different prescriptions for the spurious pole are possible depending on the gauge
field boundary conditions. However the definition of higher powers of the spurious singularity is
not settled by the ML prescription. Moreover -as observed in [3]- no complete regularisation of the
singularity is achieved when n.k and n∗.k → 0 simultaneously and non local ultraviolet divergent
terms show up in loop diagrams with the ML prescription. Due to the presence of test functions
in Gµν a different analysis is possible which is in keeping with generic mathematical extension of
singular distributions.

3. Generic extension of singular distributions and application to Gµν

Let us consider now a singular distribution T (X) ∈ S′(Rd −{0}). The singular order k of
T (X) at the origin of (Rd) is such that k = in f{s : lim

λ→0
λ sT (λX) = 0}−d. We shall call T̃ (X) the

extension to the whole of S′(Rd) of the original T (X). The construction of T̃ (X) is achieved
with a super regular test function (SRTF) ∈ S(Rd) constructed as a partition of unity (PoU).
A function is dubbed SRTF if it vanishes with all its derivatives at the boundaries of its do-
main of definition and a PoU is made of the superposition of functions u(x − jh) suh that for
x ∈ [ jh,( j +1)h] u(x− jh)+u(( j +1)h− x) = 1 [6].
For a SRTF f is identical to its Taylor series remainder [9] Rk

0 f of any order since f (α)(0) = 0
∀α ≥ 0.
By construction [6] a PoU can be written as f (X) = w(X)g(X) with g(X)≤ 1 and w( X

t ) =

θ(t− µ̃‖X‖), µ̃ ≤ 1. We consider now a singular homogeneous distribution T (X) such that T ( X
t ) =

t(k+d)T (X). The general analysis using Lagrange’s formula [5, 6, 8, 9] for the Taylor series remain-
der and presented in former LC-meetings leads to the space(-time) integral

< T (X),w(X)g(X) > = (−)k+1(k +1) ∑
|β |=k+1

∫
ddX∂ β

X

[Xβ

β ! T (X)]
∫ 1

µ̃‖X‖
dt

(1− t)k

t

]
g(X)

= < T̃ (X),g(X) >

1due to the specific properties of the test functions (Eq. IV.12 of Ref.[6])
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After the final t-integration the extension T̃ (X) of T (X) is read off from the X-integral and writes

T̃ (X) = (−)k(k +1) ∑
|β |=k+1

∂ β
X

[Xβ

β ! T (X) log(µ̃‖X‖)
]
+

(−)k

k! Hk ∑
|β |=k

Cβ δ (β )(X)

Here Hk =
k

∑
p=1

(−1)(p+1)

p

(
k
p

)
= γ +ψ(k +1) and Cβ =

∫
(‖X‖=1) T (X)Xβ dS.

We envisage now the application of this generic result to Gµν . After integration 2 over k− = n∗.k
the following decomposition of Gµν at D = 4 is obtained

Gµν(x) =
1

(2π)4 {−ıgµν I0(X)− (nν∂µ +nµ∂ν)I1(X)+nνnµ∂ 2I2(X)},with

Ip(X) = −ıπ
∫

d2k⊥

∫ ∞

−∞

d(n.k)
(n.k)p+1 sign(n.k)exp[−ık.X ] f 2[

1
2(n.k +

k2
⊥

2n.k
)2].

Here exp[−ık.X ] = exp[−ı(n.kX− +
k2
⊥

2n.k X+) + ık⊥.X⊥]. f 2[ 1
2(n.k +

k2
⊥

2n.k )
2] is a SRTF (of Besov

space type [1]) providing extension of distributions in n.k when either n.k → 0 or nk → ∞. It gives

˜
[

1
(n.k)p+1 ] =

(−)p

p! ∂ p+1
n.k log[µ(n.k)]+2 (−)p

p! Hpδ (p)(n.k).

4. Relevance of the extension

A test case is given by the I0 piece in the expression for Gµν (a =
k2
⊥
2 X+ > 0,b = X− > 0,z =√

b
a(n.k))

I f (a,b) =
∫ ∞

0

dz
z

exp[ı
√

ab(z+
1
z
)] f [(z+

1
z
)].

I f (a,b) exists in the limit f → 1 over the whole integration domain, with the value

I f=1(a,b) = −πN0(2
√

ab)+ ıπJ0(2
√

ab).

The limit ab → 0 of I f=1(a,b) (see below) can actually be obtained directly [10] from the integral
itself without reference to the above exact result. The strategy is to expand exp[ı

√
ab
z ] and, at the

point where the series does not formally exist, use the extension formula for [̃ 1
zp+1 ] and resum. Then

I f (a,b) = N

∞

∑
p=0

(−ı
√

ab)p

(p!)2

∫ ∞

0

dz
z

exp[ı
√

abz][∂ p+1
z log[µz]+2Hpδ (p)(z)]

= N

∞

∑
p=0

(−ı
√

ab)p

(p!)2 L
ε→0

[∂ p+1
z log[µz]+2Hpδ (p)(z);s].

2The test function having no extension to the complex plane, contour techniques cannot be used here; instead the
method is that indicated in footnote 1
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Here L is the Laplace-transform, in the sense of distributions, with s = ε − ı
√

ab ℜ(s) > 0

I f (a,b) = N

∞

∑
p=0

(−1)p(
√

ab)2p

(p!)2 [log(µ)− log(
√

ab)+ ı
π
2 +ψ(p+1)]

=
ab→0

−2log(
√

ab)−2γ + ıπ = N (log(µ)− log(
√

ab)+ ı
π
2 − γ).

Hence N = 2, µ = 1. Regrouping different terms

I f (a,b) = −2
∞

∑
p=0

(−1)p(
√

ab)2p

(p!)2 [log(
√

ab)+ γ)]+2
∞

∑
p=0

(−1)p(
√

ab)2p

(p!)2 (γ +ψ(p+1))+ıπJ0(2
√

ab)

= −πN0(2
√

ab)+ ıπJ0(2
√

ab).

The method gives then a consistent distributional extension not only for the original LC-singularities
present in Gµν but also for any power of them, at variance with the ML prescription.
A more instructive comparison is given when considering the Fourier transforms GML and GHD of
the ML and distributional HD precriptions (p.x = (n.p)(n∗.x)+(n∗.p)(n.x)− p⊥.x⊥)

GML(x) =
∫

d4 p
(2π)4

exp[ip.x]
n.p+ ıεn∗.p

=
1

2π
1

n.x− ıεn∗.x
δ 2(x⊥)

GHD(x) =
∫

d4 p
(2π)4 exp[ip.x]{2∂n.p[log(µ | n.p |)]+4 H0︸︷︷︸

0

δ (n.p)}

=
ı

2π
(n∗.x)[4πγδ (n∗x)+πP f [

sign(n∗.x)
n∗.x

]]δ (n.x)δ 2(x⊥) =
ı
2sign(n∗.x)δ (n.x)δ 2(x⊥)

Here P f is the Pseudofunction distribution [11]. Note that both cases correspond to an inversion of
n.∂ since (n.∂ )GHD(x) ≡ ∂

∂ (n∗.x)GHD(x) = (n.∂ )GML(x) = ıδ 4(x). The HD and ML prescriptions
differ in the Pseudofunction part present in the latter, a main characteristic of propagators in the
causal approach [4]. More comparisons at the level of specific Feynman integrals will be presented
elsewhere.

5. Residual gauge transformations

On the LC the mutual existence of n and n∗ implies the following decomposition of the gauge
field

Aµ = (n∗.A)nµ +(n.A)n∗µ +A(T )
µ = A(L)

µ +A(T )
µ

The corresponding projectors onto the transverse and longitudinal directions are given by

P(T )
µν =

∂µ ∂ν

∂⊥2 +
(n∗ ·∂ )2 nµ nν

∂⊥2 − n∗ ·∂
(
nµ ∂ν +nν ∂µ

)

∂⊥2 +
(n ·∂ )2 n∗µ n∗ν

∂⊥2

−n ·∂
(
n∗µ ∂ν +n∗ν ∂µ

)

∂⊥2 −
(

1− n ·∂ n∗ ·∂
∂⊥2

) (
nν n∗µ +nµ n∗ν

)
+gµ,ν ;P(L)

µν = gµ,ν −P(T )
µν ,

with the following properties,
P(T )

µσ P(T )σ
ν = P(T )

µν ;P(L)
µσ P(L)σ

ν = P(L)
µν ;P(L)

µσ P(T )σ
ν = P(T )

µσ P(L)σ
ν = 0.

nµP(T )
µν = n∗µP(T )

µν = ∂ µP(T )
µν = P(T )

µν nν = P(T )
µν n∗ν = P(T )

µν ∂ ν = 0;

nµP(L)
µν = nν ;n∗µP(L)

µν = n∗ν ;∂ µP(L)
µν = ∂ν ;P(L)

µν nν = nµ ;P(L)
µν n∗ν = n∗µ ;P(L)

µν ∂ ν = ∂µ ;
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The consequences for A(L)
µ = P(L)

µν Aν and A(T )
µ = P(T )

µν Aν are then

(n.A) = nµ(P(T )
µν +P(L)

µν )Aν = nµP(L)
µν Aν = (n.A(L));

(n∗.A) = (n∗.A(L)); (∂ .A) = (∂ .A(L)).

(n∗.A(T )) = (n.A(T )) = (∂ .A(T )) = 0.

The knowlege of (∂ .A),(n.A) or (n∗.A) determines A(L);
A(T ) is gauge invariant: A′(T )

µ = A(T )
µ +P(T )

µν ∂ ν
︸ ︷︷ ︸

0

ΛΛ = A(T )
µ ;

A(L) is not: A′(L)
µ = A(L)

µ +P(L)
µν ∂ νΛΛ = A(L)

µ +∂µΛΛ
LC-gauges are such that (n.A) = 0, (∂ .A) = 0 (or same with n∗).

(n.A) = 0 → (n.∂ )ΛΛ = 0 → ΛΛ ≡ ΛΛ(n.x,x⊥),

(∂A) = 0 → ∂ 2ΛΛ = [2(n.∂ )(n∗.∂ )−∂ 2
⊥]ΛΛ = 0 → ΛΛ(n.x,x⊥) = ΛΛ1(n.x)+ΛΛ⊥

2 (n.x).x⊥

But the gauge transform concerns only A(L) → ΛΛ⊥
2 = 0. Imposing in addition (n∗.A) = 0 elimi-

nates the residual n.x dependence of ΛΛ; however is it compatible with the constrained quantization
of the gauge field usually performed within the Dirac-Bergmann (DB) algorithm [12]? We first
note that Aµ has a zero mode (P)-sector and a complement, the particle (Q)-sector, where Gµν acts
and where (n.A(T )) = (n∗.A(T ) = (∂ .A(T )) = 0 by construction: the implementation of all gauge
conditions (including (n∗.A) = 0) takes place in the P-sector.
In the DB algorithm the dynamics of the system is finally fixed by the choice of two subsidiary
gauge conditions. Any gauge choice should exhaust gauge arbitrariness, that is no more dynam-
ics of redundant degrees of freedom should be present. Already two LC-gauge conditions are
imposed -n.A = 0,∂ .A = 0-, but n.x remains as a residual gauge degree of freedom: there is ap-
parently no room for one additional gauge condition. However there is a possible way out since
n.A = 0,∂ .A = 0 → (n.A + ∂ .A)2 = 0 → (n.A)2 + (∂ .A)2 = −2(n.A)(∂ .A). Hence the separate
Lagrangian enforcement of the two initial gauge conditions is identical to the single enforcement
of (n.A)(∂ .A) = 0, as checked for the classical propagator by Suzuki and Sales [13]. Thus there
is some room for an extra gauge condition eliminating the left over redundant degrees of freedom.
On LC the decomposition Aµ = (n∗.A)nµ +(n.A)n∗µ +A(T )

µ leads to

Dµν(k) = −gµ,ν −
n∗µn∗ν(n.k)2

k2
⊥

+

(
kν n∗µ + kµn∗ν

)
(n.k)

k2
⊥

− (n∗.k)2nµnν

k2
⊥

+
(n∗.k)

(
kνnµ + kµnν

)

k2
⊥

+

(
1− n.kn∗.k

k2
⊥

)(
nνn∗µ +nµn∗ν

)
− kµkν

k2
⊥

with the properties of triple transversality and usual closure Dµλ Dλ
ν = −Dµν

6. Concluding remarks

As conjectured long ago by Bassetto et al.[1] the treatment of gauge fields as OPVD with
PoU test functions leads to the distributional extensions of the "usual" LC-divergences. These
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extensions are based on a generic mathematical analysis of singular distributions whose principles
are not tied up to some a-priori Wick-rotation specificities requested for propagators. It appears
that on the light-cone it is necessary to consider the null vector n and its dual n∗ on the same
footing. A specific form of the polarisation tensor Dµν(k) results from the ensuing transverse
and longitidunal projectors. The presence of residual LC-divergences is shown to be connected
with an incomplete elimination of redundant degrees of freedom in the Dirac-Bergmann algorithm.
After proper distributional extensions the remnant of the test function will provide the necessary
regulation in the remaining integrals in the transverse directions. Following [1, 2] and the comments
of [3] the general investigation of Feynman integrals within the test function approach is of primary
interest and presently under way.
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