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Supersymmetric theories at finite temperature
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New nonperturbative techniques make possible the calculation of thermodynamic properties of
supersymmetric gauge theories. We apply them to supersymmetric QCD at large Nc, with a
Chern–Simons term included to give mass to the adjoint partons. The theory is solved nonpertur-
batively by the technique of supersymmetric discrete light-cone quantization, which uses a dis-
crete momentum grid in light-cone coordinates to convert integral equations for Fock-space wave
functions to a supersymmetric matrix representation. The spectral distribution of the representa-
tion is computed by Lanczos iteration of the mass-squared eigenvalue problem. Thermodynamic
quantities are then computed from an analytic fit to this spectrum.
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1. Introduction

In order to have a well-defined Fock state expansion for field-theoretic eigenstates, we use
light-cone coordinates [1] defined by a choice of x+ = (t + z)/

√
2 as the time direction. Spatial

vectors are given by x = (x−,~x⊥), with x− ≡ (t − z)/
√

2 and~x⊥ = (x,y). The light-cone energy is
p− = (E − pz)/

√
2 and the light-cone momentum is p = (p+,~p⊥) with, p+ ≡ (E + pz)/

√
2 and

~p⊥ = (px, py) The mass-shell condition p2 = m2 then yields p− =
m2+p2

⊥
2p+ .

The mass eigenvalue problem 2P−P+|ψ〉 = M2|ψ〉 can be solved by expanding |ψ〉 in Fock
states, with momentum wave functions as coefficients and diagonalizing a discrete approximation
to the resulting coupled system of integral equations. A standard method for discretization is dis-
crete light-cone quantization (DLCQ) [2]. The system is placed in a light-cone box −L < x− < L,
−L⊥ < x,y < L⊥, and periodic boundary conditions are applied. This yields a discrete momentum
grid, p+

i → π
L ni and pi⊥ → ( π

L⊥
nix,

π
L⊥

niy), for integers ni, nix, and niy. The integrals in the coupled
equations are replaced by discrete sums. The continuum limit L → ∞ is exchanged for a limit in
terms of the integer resolution K ≡ L

π P+ for fixed total momentum P+.
For supersymmetric theories, this procedure does not automatically preserve supersymmetry.

Instead [3], one must discretize the supercharge Q− and construct P− from the superalgebra relation
{Q−,Q−} = 2

√
2P−. This form of DLCQ is known as supersymmetric DLCQ (SDLCQ) [4]. The

equivalence with ordinary DLCQ is recovered in the continuum limit.
Most SDLCQ calculations, including those discussed here, are done in the large-Nc limit. This

simplifies the calculations by block diagonalizing the mass eigenvalue problem with respect to the
number of adjoint strings in the Fock states. We focus on single trace states, which are simple
glueballs Tr[a†

i1i2
(k1) . . .b

†
inin+1

(kn)]|0〉, and mesons as single strings

f̄ †
i1
(k1)a

†
i1i2

(k2) . . .b
†
inin+1

(kn−1) . . . f †
ip
(kn)|0〉, (1.1)

where f̄ †
i and f †

i create fundamental partons and a†
i j and b†

i j create adjoint partons. Either of these
states could be a boson or a fermion.

The finite temperature properties of the theory are computed [5] from the partition function
Z = e−p0/T . One does not use the light-cone analog e−p−/TLC because it does not correspond to a
heat bath at rest. Each mass eigenstate contributes according to its ordinary energy p0. For bosonic
states of mass Mn in one dimension this yields a free-energy contribution of

FB =
V T
π

∞

∑
n=1

∫ ∞

Mn

d p0
p0

√

p2
0 −M2

n

ln
(

1− e−p0/T
)

(1.2)

in a volume V . For fermions we obtain

FF = −V T
π

∞

∑
n=1

∫ ∞

Mn

d p0
p0

√

p2
0 −M2

n

ln
(

1+ e−p0/T
)

. (1.3)

In supersymmetric theories, the bosonic and fermionic mass spectra are the same, and we can
readily combine these expressions to obtain the total free energy

F(T,V ) = −(K −1)πV T 2 − 2V T
π

∞

∑
n=1

∞

∑
l=0

Mn
K1

(

(2l +1)Mn
T

)

(2l +1)
. (1.4)
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Here we have expanded the logarithms, integrated over p0, and included explicitly the contribution
of zero-mass states. The sum over l is well approximated by the first few terms. The sum over n
can be represented by an integral over a density of states

∫

ρ(M)dM. We then approximate ρ by a
continuous function that is fit to the numerical spectrum and compute

∫

dM by standard numerical
techniques. The spectrum is estimated by a Lanczos technique discussed in Sec. 3. A similar
approach to the calculation of thermodynamic properties is given by Strauss and Beyer [6], based
on earlier work by Elser and Kalloniatis [7].

2. Supersymmetric QCD with a Chern–Simons term

We apply these techniques to N = 1 supersymmetric QCD with a Chern–Simons term [8]. The
action is

S =
∫

d3xTr
{

−1
4Fµν Fµν +Dµξ †Dµξ + iΨ̄DµΓµΨ−g

[

Ψ̄Λξ +ξ †Λ̄Ψ
]

(2.1)

+
i
2 Λ̄ΓµDµΛ+

κ
2 εµνλ

[

Aµ∂νAλ +
2i
3 gAµAνAλ

]

+κΛ̄Λ
}

.

The adjoint fields are the gauge bosons Aµ (gluons) and the Majorana fermion Λ (gluinos); the
fundamental fields are the Dirac fermions Ψ (quarks) and the complex scalars ξ (squarks). The
Chern–Simons coupling κ provides a mass for adjoint fields and thereby provides a natural limit
on the lengths of strings. The covariant derivatives are defined by

DµΛ = ∂µΛ+ ig[Aµ ,Λ] , Dµξ = ∂µξ + igAµξ , DµΨ = ∂µΨ+ igAµΨ . (2.2)

The associated supersymmetry transformations are

δAµ =
i
2 ε̄ΓµΛ , δΛ =

1
4Fµν Γµν ε , δξ =

i
2 ε̄Ψ , δΨ = −1

2ΓµεDµξ . (2.3)

The supercharge is

ε̄Q =
∫

dx−dx2
(

i
4 ε̄Γαβ Γ+tr

(

ΛFαβ
)

+
i
2D−ξ †ε̄Ψ (2.4)

+
i
2ξ †ε̄Γ+νDνΨ− i

2Ψ̄εD+ξ +
i
2DνΨ̄Γ+νεξ

)

.

Fermionic quantities are written in terms of components as

Λ =
(

λ , λ̃
)T

, Ψ = (ψ, ψ̃)T , Q =
(

Q+,Q−)T
. (2.5)

In light-cone gauge (A+ = 0), the nondynamical fields satisfy the following constraints:

∂−λ̃ = − ig√
2

(

[A2,λ ]+ iξ ψ† − iψξ †) , (2.6)

∂−ψ̃ = − ig√
2

A2ψ +
g√
2

λξ −κλ/
√

2 , ∂ 2
−A− = gJ , (2.7)
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with
J ≡ i[A2,∂−A2]+

1√
2
{λ ,λ}+κ∂−A2 − ih∂−ξ ξ † + iξ ∂−ξ † +

√
2ψψ† . (2.8)

The (2+1)-dimensional theory is reduced to 1+1 dimensions by assuming fields to be indepen-
dent of the transverse coordinate x2. The reduced supercharge is

Q− = g
∫

dx−
{

23/4
(

i[A2,∂−A2]−κ∂−A2 +
1√
2
{λ ,λ}

)

1
∂−

λ (2.9)

− 1√
2

(

i
√

2ξ ∂−ξ † − i
√

2∂−ξ ξ † +2ψψ†
) 1

∂−
λ

−2
(

ξ †A2ψ +ψ†A2ξ
)}

.

The mode expansions for the dynamical fields are

A2
i j(0,x−) =

1√
4π

∞

∑
k=1

1√
k

(

ai j(k)e
−ikπx−/L +a†

ji(k)e
ikπx−/L

)

, (2.10)

λi j(0,x−) =
1

2 1
4
√

2L

∞

∑
k=1

(

bi j(k)e
−ikπx−/L +b†

ji(k)e
ikπx−/L

)

, (2.11)

ξi(0,x−) =
1√
4π

∞

∑
k=1

1√
k

(

ci(k)e
−ikπx−/L + c̃†

i (k)e
ikπx−/L

)

, (2.12)

ψi(0,x−) =
1

2 1
4
√

2L

∞

∑
k=1

(

di(k)e
−ikπx−/L + d̃†

i (k)eikπx−/L
)

. (2.13)

The creation and annihilation operators satisfy commutation relations, which for finite Nc are
[

ai j,a
†
kl

]

=

(

δilδk j −
1

Nc
δi jδkl

)

,
{

bi j,b
†
kl

}

=

(

δilδk j −
1

Nc
δi jδkl

)

, (2.14)

[

ci,c
†
j

]

= δi j ,
[

c̃i, c̃
†
j

]

= δi j ,
{

di,d
†
j

}

= δi j

{

d̃i, d̃
†
j

}

= δi j . (2.15)

In addition to supersymmetry there is a Z2 symmetry [9] ai j(k,n⊥) → −a ji(k,n⊥), bi j(k,n⊥) →
−b ji(k,n⊥). This further block-diagonalizes the Hamiltonian by dividing states between even and
odd numbers of gluons.

3. Lanczos algorithm for density of states

To compute the free energy, we need the density of states for the mass spectrum of the the-
ory, which is generally given by ρ(M2) = ∑n dnδ (M2 −M2

n) where dn is the degeneracy of the
mass eigenvalue Mn. It is the derivative of the cumulative distribution function (CDF) N(M2) =
∫ M2

dM2ρ(M2).
The density can be written in the form of a trace over e−iP−x+

ρ(M2) =
1

2P+ ∑
n

dnδ (M2/2P+−P−
n ) (3.1)

=
1

4πP+

∫ ∞

−∞
eiM2x+/2P+ ∑

n
dne−iP−

n x+
dx+

=
1

4πP+

∫ ∞

−∞
eiM2x+/2P+Tre−iP−x+

dx+. (3.2)

4



P
o
S
(
L
C
2
0
0
8
)
0
0
6

Supersymmetric theories at finite temperature John HILLER

The trace can be estimated by an average over a random sample of vectors [10]. Define a local
density for a single vector |s〉 as

ρs(M
2) =

1
4πP+

∫ ∞

−∞
eiM2x+/2P+〈s|e−iP−x+ |s〉dx+, (3.3)

so that the average can be written

ρ(M2) ' 1
S

S

∑
s=1

ρs(M
2). (3.4)

The sample eigenstates |s〉 can be chosen as random phase vectors [11], where the coefficient of
each Fock state in the basis is a random number of modulus one.

The matrix element 〈s|e−iP−x+ |s〉 is estimated by Lanczos iteration [12]. Let D be the length
of |s〉, and define |u1〉 = 1√

D
|s〉 as the initial Lanczos vector. Then

ρs(M
2) =

D
4πP+

∫

eiM2x+/2P+〈u1|e−iP−x+ |u1〉dx+, (3.5)

and 〈u1|e−iP−x+ |u1〉 can be approximated by the (1,1) element of the exponentiation of the Lanczos
tridiagonalization of P−.

To construct the exponentiation, let P−
s be the tridiagonal Lanczos matrix and solve

P−
s ~cs

n =
M2

sn

2P+
~cs

n. (3.6)

A diagonal matrix Λi j = δi j
M2

sn
2P+ is related by the usual similarity transformation P−

s = UΛU−1,
where Ui j = (cs

j)i. The (1,1) element is given by
(

e−iP−
s x+

)

11
= ∑

n
|(cs

n)1|2e−iM2
snx+/2P+

. (3.7)

We note that wsn ≡ D|(cs
n)1|2 is the weight of each Lanczos eigenvalue in the spectrum, and the

local density is

ρs(M
2) ' D

4πP+

∫

eiM2x+/2P+ ∑
n
|(cs

n)1|2e−iM2
snx+/2P+

dx+

' D
4πP+ ∑

n
|(cs

n)1|22πδ (M2/2P+−M2
sn/2P+) ' ∑

n
wsnδ (M2 −M2

sn), (3.8)

Although only the extreme Lanczos eigenvalues are good approximations to eigenvalues of the
original P−, the other Lanczos eigenvalues provide a smeared representation of the full spectrum.

The contribution to the CDF is Ns(M2) ≡ ∫ M2
dM2ρ(M2) ' ∑n wsnθ(M2 −M2

sn). The full
CDF is then approximated by the average N(M2)' 1

S ∑s Ns(M2). The theta functions are averaged,
starting with the first sample as a template for the values M2

1n at which to evaluate N. The contribu-
tions to N of the other samples are estimated at these values by linear interpolation in cases where
the Lanczos eigenvalues M2

sn are not the same as those in the first set. In cases where duplicate
eigenvalues are generated by the Lanczos iterations, only one is included in the template, and the
associated weights are added together.
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The convergence of the approximation is dependent on the number of Lanczos iterations per
sample, as well as the number S of samples. Comparisons with explicit diagonalizations showed
that the recommended value [10] of 20 samples is sufficient. The number of Lanczos iterations
needs to be on the order of 1000 per sample; using only 100 leaves errors on the order of 1-2%.

A sample of results obtained for the free energy are given in Figs. 1 and 2. Additional results
can be found in [5].
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Figure 1: Free energy at fixed Yang–Mills coupling g as a function of temperature T for resolution K = 14.
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Figure 2: Free energy at fixed temperature T = 0.5κ as a function of the Yang–Mills coupling g for a
sequence of resolutions K.
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