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1. Introduction

Recently thermal field theory in the light front (LF) frame introduced by Difd has gained
guite some attention. The most important application in this framework is the pregam of
strongly coupled systems like, e.g., the quark gluon plasma. Todays perceptice QCD phase
diagram is obtained by lattice QCD computations. However, these calculat®timméed to the
regionT < u (T temperaturey quark chemical potential) due to the complex action at large chem-
ical potential. In turn, this results in the well known sign problem of the Md@aelo simulation
method. The generic Monte-Carlo sign problem is at least as hard to coagppteblems in the
complexity class NP (class of non-deterministic polynomial problems) ang @veblem in NP
is reducible to the sign problem in polynomial time (i.e. the generic Monte-Cantosigblem is
NP-hard) [2] and therefore we argue that it is worth looking for alteveavays to determine the
QCD phase diagram.

In the following we investigate LF quantization to compute thermodynamical quantities
first attempt to use results of light front quantization, i.e. the invariant maestrsim and the
wave functions of the theory, for applications in thermodynamics has bigen o [3]. How-
ever, the conclusions of Ref. [3] are rather confusing since a seocoder phase transition in
one-dimensional QED has been conjectured. The limiting cases of noadtitgy fermions on
one hand and the free boson gas on the other have not been cothsi@eneain classes of su-
persymmetric models [4] and four-dimensional pure gluonic QCD [5] haenlinvestigated and
thermodynamical properties computed. Analytical calculations in LF thernidltfieory have
been performed for different models. These perturbative computatiaves been done using a
statistical operator familiar from the more traditional instant form approdtkvas possible to
reproduce known results like thermal masses in scalar field theory apdrpes of the Nambu-
Jona-Lasino model [6, 7]. A notation of the general light cone (GL&nf, which compromises
between instant and front form coordinates, was introduced [8] atieeifollowing it was pointed
out that the canonical quantization in the GLC frame [9] is essentially anasogoordinary light
cone quantization. However, the advantages of light cone quantizedahield theory stemming
from technical simplifications in perturbative computations like the simple poletatei of the
propagator have been hardly exploited, see e.g. [10].

A non-perturbative approach to light cone quantized field theories enddy discrete light
cone guantization (DLCQ) [11]. Discrete light cone quantization is a finite duantization of
Hamiltonian field theory supplemented by boundary conditions for the fieldscats the Fock
space into finite-dimensional sectors of equal resolu{i@ﬂﬁPﬂ wherel is the box length. Mass
spectra and LF wave functions of low lying states which are independehé dox length have
been numerically computed for one-dimensional or dimensionally reducadnsy via DLCQ.
Higher dimensional systems are usually treated by the transverse latticaeppvhich replaces
two spatial dimensions by a lattice and the remaining two by DLCQ. The probleemofmaliza-
tion in Hamiltonian field theory and therefore the construction of effective tighe Hamiltonians
remains to be solved and hampers application of light cone guantization fpemturbative quan-
tum field theory in 3+1 dimensions.

In this proceeding we carefully reconsider questions in QigRs raised in [3]. We, however,
arrive at mostly different conclusions concerning the conjecturedehansition. Some of our
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results have been recently given in Ref. [12].

2. Light Front Thermodynamics

Starting from considerations in Ref. [13] the statistical operator on theflightcan be written
in the following form

1 B
= —exps = (PT+P~ 2.1
P= p{ 5> (P + )}, (2.1)
apparently different from the 'naive’ light cone versippc ~ exp(P~) that resembles the non-
relativistic form. The partition function is given b§” = Trp which is the central quantity when
one wants to compute thermodynamical and statistical properties. Whentagline partition
function in DLCQ one introduces the harmonic resolutibrand the light cone HamiltoniaH

through
M p_ Ly Lwm
L 2n 2t K
HereK is dimensionless, diagonal in the DLCQ basis and used as a measure ofciietedasp-
proximation. The light cone Hamiltonian has dimension mass squared and isthidgl part in
(2.1) since it is a non-diagonal matrix of increasing siz&irinserting (2.2) the partition function

reads

Pt = (2.2)

2\ L 2m 0 K
where "Tr means summing over all resolutiosand all corresponding (decoupled) Fock space
sectors, and is the identity matrix. The mass matrl&dK of course is different for differenik-
sectors. Note that the volume appears explicitly in (2.3) in contrast to thestgg forZ in [3].
This is due to the consistent approach based on eq. (@glis the mass of the lightest state in the
continuum limit, that means we normalize the smallest eigenvaleb one forKk — . Ina
numerical computation we fix the volume (in units of the continuum estimate of thestonass)
at the beginning and extrapolate #rto infinity. This calculation has to be performed for several
values ofL to safely determine the expected linear dependence

Z(T,L)=Tr exp{B <271K*f+LM2M*%)}, (2.3)

Q=-TIhZ =alL+p, (2.4)

whereQ is the thermodynamical potential. We emphasize that one has to pick a strictobrde
limits in L andK, first takeK — o followed byL — 0. Computing (2.3) in practice means expo-
nentiating large matrices and summing the diagonal elements. For small resokititisss most
conveniently done by first computing the eigenvalues and then the matrixexial. At larger
resolutions we employ a random vector routine [14] to compute the trace widtrex exponential,
which has been approximated by Trotter decomposition.

As a test case and to fix the range of external param&térsvhere reliable numerical results
can be extracted we investigate the free Fermi gas. The light cone sixpre$the thermodynam-
ical potential (density) of the free quantum gases is given as (uppefesigion (f), lower sign

boson b))
rdp* pt P
(A)f/b::FT./Em <1iexp{—B <2+2p+)}> (25)
0
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Figure 1: The thermodynamical potential densiy2rT In 2 as a function of_ for different temperatures.
In figure (a) the whole interval ih is shown while in figure (bL is limited to small values to present the
finite size effects. Open symboils in both figures are the pialestt maximal resolutiorK = 110. Closed
symbols are given by an extrapolation. The slope of the fipaat (values selected colored in red) is fitted
to extract the invariant potential density.

Equation (2.5) is derived analogous to the instant form case, replacngpttial volume by the
light-like extension. In the large 'volume’ limit the densities are equal in bothivédtic forms.
Figure 1(a) shows results for the free electron gas of mass0.5 eV at resolutiorkK = 110. At
small system volumes clear finite size effects are visible (see figure I{b)atlarge volumes
there are deviations from the exact result (2.5) because of the findkities. Therefore one has
to identify a scaling window where the linear behavior in (2.4) shows up.ifgelich a window is
easy at small temperatures, but for increasing temperatures the scaldwywispushed to regions
of large volumes. For the largest temperature shown in figure 1(a) thizveetaror is below 15%,
see [12] for more details.

3. QEDy, at finite Temperature on the Light Front

The light front Hamiltonian of the massive, chiral Schwinger model (@&Pis given in [11]
without the dynamical gauge field zero mode. Generically the Hamilton opérasdhe structure

2
H :mZHﬁ%V:gZ (ngo+7lTv), 3.1)
whereHg is the free Hamiltonian, that is diagonal in free particle basis\arsdme complicated
operator containing combinations of four creation and destruction operfafermions and anti-
fermions. The application of DLCQ to thermodynamics requires rather laegeronic resolutions,
as a byproduct one gets more accurate estimates for the mass spectuiffefent couplings.
Still one has the extrapolate the raw data to the likhit> o, which was done by second-order
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Figure 2: The invariant mass spectrumrafg = 1. Part (a) shows the full mass spectrum uite 35 and

in (b) the six lowest mass eigenvalues of QEPare depicted. The dashed line is a quadratic fit to the data
(values used in the fit are colored in red) and used to extnaatdntinuum limit.Mg is defined such that the
continuum value of the lowest mass is normalized to one.

polynomials in ¥K. In figure 2 the mass spectrum is plotted fofg = 1, which is in the non-
perturbative coupling regime. Thereby 2(a) shows the full spectruto ¥p= 35 and the growth

of DLCQ states is apparent. Fbt/Mg > 2 the spectrum is continuous and we singled out the six
lowest mass states in figure 2(b).

A comparison with masses obtained by other means like finite lattice calculatigns4tis
ational DLCQ [16] and fast moving frame approach [17] is possible ferdwest two states and
our results [12] are generally in very good agreement. Slight diffe=appear fom/g < 273,
The reason is that the choice of the fermionic Fock representation isngigeset optimal in this
case.

The thermodynamic quantities are obtained in the way outlined in the former sedtitn
following two relations hold

_dnZ T?

p:—w:{lnff and u=-——. (3.2)

In practice, we have directly computed the pressure and used a nunuenicaltive to determine
the internal energy density Figure 3(a) (3(b)) show the dimensionless ratio of pressure (internal
energy density) and@? as a function of temperature of a QED gas for four different couplings.
For massive fermions we meet the chargeless condition of physical gibhg) = 0 and thus
computed? in the canonical ensemble. In the limit of vanishing mass we used grandicahon
ensemble withu = 0 since in this case LF QED; is a free boson theory of masg, = %T The
errors in figure 3(a) are due to the extrapolation to larger resolutionsoaigthly carried over from

the free case computation in section 2. In figure 3(b) the fluctuations ofatesepints can be
reduced by setting a smaller temperature grid. The external parareltesise both given in units

of the lowest bound state mak. Unlike the free case before we do not set a definite physical
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Figure 3: The thermodynamical quantities pressure (a) and intemmaigy density (b) divided byf? as
functions of temperature. Four different couplings arenshiqpure Bose gas (solid line), strongly interacting
Fermi systenm/g = 22 (squares), weaker interacting Fermi systeyty = 1 (circles), free Fermi system
g/m= 0 (diamonds).

scale sincé/ is not fixed in physical units. Remember that the mass of the first bound atateec
large, like in QCD where the lightest bound state is the pion of mgss 140 MeV made out of
nearly massless quarks. To judge whether the temperature reachedumtbeaal computation is
sufficient we compare the high-temperature values in the figures 3 with thé regime of (2.5).
One finds that the pressure has not yet reached the value expedtesl ligh-temperature limit
p/T2 ~ /6, but the internal energy is @t > M in the range ofi/T? ~ 11/6. In comparison to
the results of the earlier study [®]andu are computed at significantly higher temperatures and
no sign of the conjectured phase transition is found. The figures 3thfenterpretation that the
thermodynamical quantities change smoothly under variation of the coupling.

4. Conclusion

This contribution is concerned with the application of light cone guantizationetahérmo-
dynamics of non-perturbative quantum field theory. As an example wiedtr€ED in 1+ 1 di-
mensions and presented the pressure and the internal energy. Sinaeexnmmputed the partition
function other thermodynamical quantities like the entropy and the specifichrde obtained
via derivatives of IrZ¥ and the equation of state can be given numerically. This procedure is limited
by the exponential growth of basis states and the dimensionality of the Hamiltoigix with in-
creasing harmonic resolution. To this end an effective (non-pertug)agnormalization program
for Hamiltonians is necessary. Promising suggestions in this direction arartiarisy transfor-
mation renormalization transformation [19, 20], and the density matrix renostializgroup in
momentum space [21]. More specifically within the massive Schwinger modetksion of the
dynamical zero mode is desirable because the condensate connecteddoth@ode may have
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impact on the thermodynamics. In Ref. [22] such a light cone Hamiltonian igesiigd which
could be a good starting point.

A main objective of this direction of research is the extension to four-dimeakimite density
QCD, avoiding the Monte-Carlo sign problem and reveal the phase diagfrguark matter from
first principles. So far we have proven that the consistent applicatidredheoretical framework
outlined in [13] to the non-perturbative situation is possible and leads tomabke thermodynamic
results.
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