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1. Introduction

The Bogoliubov-Epstein-Glaser Causal Field Theory (BEG-CFT) [flis-& finite field theory
free of divergences at any level of the theory. It has been redaéwa talk at this conference by
Andreas Aste. In conventional, equal time formulation, by constructiof, €FRmited to pertur-
bative situations (trivial vacuum). In this contribution we show that such limitatao not exist in
Causal Light-Front Field Theory (CLFFT). Finiteness is particularly irtgratrin the nonperturba-
tive case where regularization via cutoff is problematic. The reasondayiplicability of CLFFT
in the nonperturbative domain is the trivial structure of the vacuum-statervéihe signature of
nontriviality is the appearance of a vacuum operator structure. This inguigs and bad features:

The good news:the action of Fock-space operators on the vacuum is well defined: the-ca
lation of the S-matrix elements can be performed with perturbative techniques.

The bad news: the vacuum sector of the field operators, defined by the projection on the
space independent part, is a priori not known. Therefore the Hamiltoisia priori not known. It
must be derived iteratively from constraints and equations of motion whicl &laletermine the
vacuum fields Their dynamics is related to correlation functions. They are decisive focalr
phenomena.

Particle fields , defined as the complement of the vacuum part, are determined by the S-
matrix. Vacuum fields enter via interaction diagrams into this calculation (medifeut eff the
vacuum). The induced change of the particle fields acts back on inpubdaie determination of
the vacuum sector fields and so on...This leads, ideally, at the end to ansédfeat determination
of the vacuum field and therefore of the Hamiltonian.

2. Causality Issues

The starting point is the expression for the S-matrix written in the Minkowskiné, with the
necessary caveats concerning distribution splitting

N=oo 1 .
Su=1+5 H/d“xld“xz .......... A*%ag(X1)...g(%) Ta(X1..... Xn).
n=1""

Ta(X1, .., Xn) = H™(x1) 008 — X H™ (x2)....0(C_; —x)H™ (x,).

Since the field operators containedH{" are operator valued distributions one has to test the
S-matrix with Schwartz space test functiog(;) which in addition switch off the interaction at
infinity. On the light cone the causal structure is the same as in the Minkoaski mamely for
two events at timeg) andx3, separated by a light-like distance, one ha&d —x9) = O(xJ —x;)
(wherex™ = %+ are the corresponding light cone times) and events with space-like Separa
can not be connected by causal propagators. Therefore the transittte light cone&sy = Sc is
accomplished by the replacemefit— x*. The building blocks for the construction of the S-matrix
are causal propagators which are defined as commutatassan example we show the elementary
causal propagator D(x-y) for a scalar field decomposed into positdeagative frequency parts:

®(x) = &) (x) + O (x),
D(x—y) = i |®700,®(y)| +i |®0,0(y)]| =D (x=y) + D (x-y).
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Contractions are defined by:

with momentum space representations
D™ (p) = +i5(p? —m*)O(+p")

Technical remark 1: D(F)andD(~) are not causal separately!!; only the sum is causal.

Technical remark 2: For c-number fields - present in vacuum fields - contractions_}are define
—

by Poisson brackets of fields and their conjugate momenta. One {;tp‘ts)( K ),(p(+)(k’)} =

—

iN(k )6(? - 7), whereN(?) is the mean density of particles with momenttknand energy
k= (k). The c-number propagator beconis” (k) = +i5(k2 — mIN( K )O(£k-).

The causality condition allows to calculate T-matrix elements iteratively starting fhe first
order termTy(x) =: H™(x) : up to ordern 1; for a time orderingxd > x§ > .....x2 one gets

Tn(Xl,Xz,....,Xn) = T1(X1)T1(X2) ....... Tl(Xn).

3. Construction of the total field

The total field is decomposed 845x) = ®(x) + Q(x); here®(x) is the total operator valued
field which is obtained as a sum of normal ordered products of free fddatorsg; (x) via the
Haag series [8]. It contains particle sector parts - obtainable through mudtifitn of H™ on
#1(X) - and nonperturbative vacuum sector paf$x) is the c-number part of the nonperturbative
vacuum field containing static and dynamic zero modes. Itis not accessilgenturbation theory.
Classical c-number fields are essential for the description of phasstivas and fluctuations
of order parameters near critical pointQ(x) represents a medium effect for the propagation of
perturbative fieldsQ(x) and the nonperturbative part ®{x) have to be determined from vacuum
matrix elements of constraints and equations of motion.

3.1 Formal construction via Haag series in terms of free fields

An expansion of®(x) is performed in terms of products of free fiefd(x) = ¢£+) (X) +
q)f)(x). Denoting byg,(x) with n=1,2,3.. the contribution involving n free field we have

D(X) = ¢1(X) + P2(X) + P3(X) +... = ¢1(x)+/gz(x1—x,x2—x,x):¢1(x1)¢1(x2):ddxldxg+
/gg(xl—x,xz—x,x3—x,x):¢1(x1)¢1(x2)¢1(x3):d><(1’dxgd>é§+...

Since each factog; is a sum of a positive and negative frequency part, all kinds of ptedafc
creation and annihilation operators appear in the normal products. Olggith@ normal order
prescription served to ensure that the vacuum expectation val@éxpfvanishes, if the vacuum
is perturbative. In the Minkowski case, in a nonperturbative situation avitflontrivial vacuum,
this prescription becomes ineffective. In the light cone case one can inatnéganormal order

1The symbol :A: means normal order of the operator A
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prescription for the above definition of selfinteracting fields; however idetsoowith different

types of interacting fields products of these fields will appear in the Haggssén this case a
normal order prescription would kill all interaction effects in matrix elementsotium to vacuum
or vacuum to particle state types. As we shall discuss in the examples beldWetfieorder

prescription is more appropriate to construct bosonic and fermionic fields.

3.2 Coupling of perturbative and vacuum fields

The interactionH™(x) couples®(x) andQ(x) . As a result interaction diagrams fd¥(x)
contain as internal lines contributions fra(x). The result is a change of spectrumdnrsector
due to vacuum contributions. In turn again there is a change of constaaithesquations of motion
due to modified propagators. In turn a modificatiortbfollows due to modified constraints and
equations of motion - and so on. Hence the following iterative scheme:

Vacuum modes interac
_ from enter Interaction modi particle propagators
Egs. of motion andi ;. - diagrams via % and spectra
constraints vacuum field
contributions

modified spectra act back 4 on vacuum fields
~1

Schematic scenario for interdependence of vacuum
and particle modes

4. Example®? ;

The Lagrangiah. and equation of motion (EQM) are

L= %mcp(x)a_q)(x) _ %chb?( X - g0 (910 +P)B() + J0%(x) =0
In addition, as a consequence of the singular nature of the LC-Lagrarigere is a constraint. It
is identical to the projection of the EQM on the vacuum sector:

©s = MPO(x) + 2 %(x) =0,

For the construction of the field operator we use the Haag series@ to
W= (1 + 02+ Q)% =03+ 92(92+ Q) + P1(d2+ Q) P1 + (92 + Q)¢9? + terms of higher order
in ¢». The underlined terms are non-perturbative and generate vacuonmoeles - but only if
the Weyl ordering is used. The nonperturbative fi€ldg), ¢2(x), @a(X),.... are non zero only if
the order parameter of the broken phas¢'(® >= ®y+#0 i.e. if the coupling strength exceeds a
critical valueg > g¢r. The nonperturbative fielq}z(x) has the following explicit form [9]:

o) = o [ [ O 1O0e) k+k+ J106)106)(65 (kK5

a (kf)a(k{)ez( k2 )+ terms forG; *andG, ~ }dk dk} .
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The testfunctiond (k') come in via the Fock expansion of the free field where they are required
to give a meaning to the operator valued distributia(x) . The dependence @, onxis induced
by a nonperturbatives-dependent back-ground fief@l(x) = ( k)ez** [9].

4.1 Equations forQ(x) and ¢2(X).

Equations of motion and the constra§ yield equations for the unknown amplitud@s
G, .G, (constrained and dynamical zero modes). They are obtained [9] bygtakioropriate
matrix elements of the equations of motion according to:

<O0[EQM|0> — > Q, <qu|EQM|ay > — > G} 7, < qu| EQM[0 > — > G *

Due to the interaction term? this is a system of nonlinear equations. In the long wavelength
limit (k" — > 0) the amplitudes become small and the equations can be linearized. Théyeare g
explicitely in [9]. Their symbolic structures are:

D' +Ko® [G3™ B GJT| =
-1 — —
A ¢2+,G; +Kpi-® 1[Gy~ @ G, ']
-1 —
A¢2++G§r+ +Kyr+® (G~ @ G,

0
9Q (B),
g

TheA, ,A‘} ,Aq)l+ are inverse propagators for the fields G;—, G;*. The Ko, Ky, Ko+
are mtegraflnteractlon kernels. The strategy for the solution is: 1) S8lyvar{d (C) in terms of
Q. 2) Insert solution of (B) and (C) in (A). The result is a homogenousaégn forQ i.e. a
dispersion relation for the c-number fieql from which the critical coupling and th@-function
can be extracted.

4.2 Vacuum field contributions to interaction diagrams

Here we give an example for the action of the lowest order contributioteeafonperturbative
fieldsQ and¢, in selfenergy diagrams of ordgf; in the diagram we denote these fields generically
by d1.

Manifestation of nonperturbative vacuum effects in interaction diagrams.

In the perturbative diagram each vertex is made of 4 field operatorsl:{ik)@f)ﬂ*)(pf),
where 3 of them are contracted pairwise between 2 vertices. In thesporr@ing nonperturbative
diagram the vertex factor ig! ¢ o{" ") whered|") can either come from or from the
nonpertutbative part af,. Near the phase transition the nonperturbative fields are small. Theerefor
diagrams with twab; - lines are omitted. It is clearly seen that the calculations, though being non-
perturbative, use perturbative techniques, the nonperturbative ieeséding in the construction
of Q.



Nonperturbative Causal Field Theory Ernst Werner

5. Example with bosonic and fermionic fields

We consider the Lagrangian of the Yukawa model

2
L =W(iyo* —m)Y+20 D3, d— %afqa— “?cp2 —gdyPyY

In this case the fermionic fields contribute to nonperturbative vacuum fieldge form of com-
posite fields built from fermion fields coupled to spinless scalars. As uguhk fermion field

is written in terms of the uppey; and lowery, component, the EQM splits into two coupled
equations: the first one is a genuine equation of motion, where the lighticomeéerivative ofy;

is coupled toyr; the second expresses the longitudinal space derivatiye diroughys, which
means thail, is a dependent quantity. Conventionallyandys, are called independent and depen-
dent fields respectively. The Lagrangian being singular one has to@agththe Dirac-Bergmann
algorithm [10] to find all the constraints which are all related to the constlaiagure of bosonic
and fermionic momenta. Here we list the canonical momenta and the corréspondstraints:
My, =0; ©1 =Ty, ~ 0; Ty = 0; Op =Ty ~ 0; Ty, = —iY), ; O3 = Ty, = —iY, ~0;
7T¢,Z+:—iw2; @4:@;:—@2:0; Tip = 20_P; Os=Tp—20_P~0

The vacuum field2(x) is composed of a bosonic fiefb,,c and a fermionic contributionf{y)yac
and eventually more complicated combinations of them. The equations of motithreffarmions
and bosons are respectively

(iyuoH —m)y = goy (iyu0H + my = goy

490,0-®—9°D+ u’d—gPy =0

with solutions (inspired by the Haag series):

1
— 0 —
Y =9gGyue®yY+y Gyo = yad—m
U = gG;OP + 7° Gt
~ 9% Wiy ok +m’
1

D =9Gy, PP+ ¢1+Q Gy,

T 40,0 -2+ 2

In the last equationp, is the free bosonic field (the first term in the Haag series; see section 3.1).
The free fermion field is denoted y°,i = 1,2. The zero mod& is obtained by projection of the
EQM for ® on the vacuum sector:

p2Q =g(PP)vac, i.6 H?Qo=g<O0[Py|0>

Qo is given entirely in terms ok O|gy|0 >. In lowest order one finds

NN
<0[gy|0>= —47_[3m/p+f (P+, PL)

2For the meaning of the weak equalitysee [10]
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In the iterative solution of these equations the Weyl ordering of proddicigserators must be
used in order to keep track of the effects of the zero modes. Iteratiore @piwations of motion
changes the functional dependencé&gfon < O|gy|0 > and the value ok O[]0 > itself, but
the fact that the bosonic zero mode is determined by the fermionic condeasetims valid.

Things would be different in the Yukawa-Higgs model where the bosonkicae hat po-
tential yields as a first approximation an independent fixing of the bosena modeQ,. The
coupling termgQo@ Y acts then as a mass term (mass generation in the standard model via Higgs
mechanism).

6. Concluding remarks

The combination of the description of the signature of nontrivial vacuadrg modes of
the fields with the techniques of the causal approach has highly nonaiviatemarkable conse-
guences:

1. The inclusion of nonperturbative vacuum effects in the calculationeoStmatrix.

2. The possibility to construct a mathematically sound theory which avoids\atgéinces
related to the use of ill-defined distributions in the standard approach.

These two properties qualify the Causal Light Front Field Theory as aral candidate for
studying nonperturbative physics
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