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Nonperturbative Causal Field Theory Ernst Werner

1. Introduction

The Bogoliubov-Epstein-Glaser Causal Field Theory (BEG-CFT) [1 – 7] is a finite field theory
free of divergences at any level of the theory. It has been reviewed in a talk at this conference by
Andreas Aste. In conventional, equal time formulation, by construction, CFT is limited to pertur-
bative situations (trivial vacuum). In this contribution we show that such limitations do not exist in
Causal Light-Front Field Theory (CLFFT). Finiteness is particularly important in the nonperturba-
tive case where regularization via cutoff is problematic. The reason for the applicability of CLFFT
in the nonperturbative domain is the trivial structure of the vacuum-state vector. The signature of
nontriviality is the appearance of a vacuum operator structure. This impliesgood and bad features:

The good news:the action of Fock-space operators on the vacuum is well defined: the calcu-
lation of the S-matrix elements can be performed with perturbative techniques.

The bad news: the vacuum sector of the field operators, defined by the projection on the
space independent part, is a priori not known. Therefore the Hamiltonian is a priori not known. It
must be derived iteratively from constraints and equations of motion which allow to determine the
vacuum fields. Their dynamics is related to correlation functions. They are decisive for critical
phenomena.

Particle fields , defined as the complement of the vacuum part, are determined by the S-
matrix. Vacuum fields enter via interaction diagrams into this calculation (medium effect of the
vacuum). The induced change of the particle fields acts back on input datafor the determination of
the vacuum sector fields and so on...This leads, ideally, at the end to a selfconsistent determination
of the vacuum field and therefore of the Hamiltonian.

2. Causality Issues

The starting point is the expression for the S-matrix written in the Minkowski-frame, with the
necessary caveats concerning distribution splitting

SM = 1+
n=∞

∑
n=1

1
n!

∫

d4x1d4x2..........d
4xng(x1)...g(xn)Tn(x1.....xn).

Tn(x1, ..,xn) = H int(x1)Θ(x0
1−x0

2)H
int(x2)....Θ(x0

n−1−x0
n)H

int(xn).

Since the field operators contained inH int are operator valued distributions one has to test the
S-matrix with Schwartz space test functionsg(xi) which in addition switch off the interaction at
infinity. On the light cone the causal structure is the same as in the Minkowski case: namely for
two events at timesx0

1 andx0
2, separated by a light-like distance, one has:Θ(x0

2−x0
1) = Θ(x+

2 −x+
1 )

(wherex+
i = x0

i +x3
i are the corresponding light cone times) and events with space-like separations

can not be connected by causal propagators. Therefore the transition to the light coneSM ⇒ SLC is
accomplished by the replacementx0 → x+. The building blocks for the construction of the S-matrix
are causal propagators which are defined as commutators.As an example we show the elementary
causal propagator D(x-y) for a scalar field decomposed into positive and negative frequency parts:

Φ(x) = Φ(−)(x)+Φ+(x),

D(x−y) = i
[

Φ(−)(x),Φ(+)(y)
]

+ i
[

Φ(+)(x),Φ(−)(y)
]

= D(−)(x−y)+D(+)(x−y).
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Contractions are defined by:

i
︷ ︸︸ ︷

Φ(x)Φ(y) = D(−)(x−y) = −D(+)(x−y),

with momentum space representations

D(±)(p) = ±iδ (p2−m2)Θ(±p−)

Technical remark 1: D(+)andD(−) are not causal separately!!; only the sum is causal.
Technical remark 2: For c-number fields - present in vacuum fields - contractions are defined
by Poisson brackets of fields and their conjugate momenta. One gets

{

φ (−)(
−→
k ),φ (+)(

−→
k′ )

}

=

iN(
−→
k )δ (

−→
k −

−→
k′ ), whereN(

−→
k ) is the mean density of particles with momentum

−→
k and energy

k−(
−→
k ). The c-number propagator becomesD(±)

cl (k) = ±iδ (k2−m2)N(
−→
k )Θ(±k−).

The causality condition allows to calculate T-matrix elements iteratively starting from the first
order termT1(x) =: H int(x) : up to ordern 1; for a time orderingx0

1 > x0
2 > ......x0

n one gets
Tn(x1,x2, ....,xn) = T1(x1)T1(x2).......T1(xn).

3. Construction of the total field

The total field is decomposed asΨ(x) = Φ(x)+ Ω(x); hereΦ(x) is the total operator valued
field which is obtained as a sum of normal ordered products of free field operatorsϕ1(x) via the
Haag series [8]. It contains particle sector parts - obtainable through multipleaction ofH int on
ϕ1(x) - and nonperturbative vacuum sector parts.Ω(x) is the c-number part of the nonperturbative
vacuum field containing static and dynamic zero modes. It is not accessible via perturbation theory.
Classical c-number fields are essential for the description of phase transitions and fluctuations
of order parameters near critical points.Ω(x) represents a medium effect for the propagation of
perturbative fields.Ω(x) and the nonperturbative part ofΦ(x) have to be determined from vacuum
matrix elements of constraints and equations of motion.

3.1 Formal construction via Haag series in terms of free fields

An expansion ofΦ(x) is performed in terms of products of free fieldϕ1(x) = ϕ(+)
1 (x) +

ϕ(−)
1 (x). Denoting byϕn(x) with n=1,2,3.. the contribution involving n free field we have

Φ(x) = ϕ1(x) + ϕ2(x) + ϕ3(x)+ ... = ϕ1(x)+
∫

g2(x1−x,x2−x,x) :ϕ1(x1)ϕ1(x2) :ddx1dxd
2 +

∫

g3(x1−x,x2−x,x3−x,x) :ϕ1(x1)ϕ1(x2)ϕ1(x3) :dxd
1dxd

2dxd
3 + ...

Since each factorϕi is a sum of a positive and negative frequency part, all kinds of products of
creation and annihilation operators appear in the normal products. Originally, the normal order
prescription served to ensure that the vacuum expectation value ofΦ(x) vanishes, if the vacuum
is perturbative. In the Minkowski case, in a nonperturbative situation witha nontrivial vacuum,
this prescription becomes ineffective. In the light cone case one can maintain the normal order

1The symbol :A: means normal order of the operator A
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prescription for the above definition of selfinteracting fields; however in models with different
types of interacting fields products of these fields will appear in the Haag series; in this case a
normal order prescription would kill all interaction effects in matrix elements ofvacuum to vacuum
or vacuum to particle state types. As we shall discuss in the examples below theWeyl order
prescription is more appropriate to construct bosonic and fermionic fields.

3.2 Coupling of perturbative and vacuum fields

The interactionH int(x) couplesΦ(x) andΩ(x) . As a result interaction diagrams forΦ(x)
contain as internal lines contributions fromΩ(x). The result is a change of spectrum inΦ-sector
due to vacuum contributions. In turn again there is a change of constraintsand equations of motion
due to modified propagators. In turn a modification ofΩ follows due to modified constraints and
equations of motion - and so on. Hence the following iterative scheme:

Schematic scenario for interdependence of vacuum
               and particle modes

constraints

Vacuum modes
enter

into

modify

 

  interaction 
  diagrams via
  vacuum field
  contributions

particle propagators

and spectra

modified spectra act back on vacuum fields

Eqs. of motion and
from

4. ExampleΦ4
1+1

The LagrangianL and equation of motion (EQM) are

L =
1
2

∂ +Φ(x)∂−Φ(x)−
1
2

m2Φ2(x)−
g
4!

Φ4(x); (∂ +∂− +m2)Φ(x)+
g
4!

Φ3(x) = 0.

In addition, as a consequence of the singular nature of the LC-Lagrangian, there is a constraint. It
is identical to the projection of the EQM on the vacuum sector:

Θ3 = m2Φ(x)+
g
3!

Φ3(x) = 0.

For the construction of the field operator we use the Haag series up toϕ2:
Ψ3 = (ϕ1 + ϕ2 + Ω)3 = ϕ3

1 + ϕ2
1(ϕ2 +Ω)+ϕ1(ϕ2 +Ω)ϕ1 +(ϕ2 +Ω)ϕ2

1 + terms of higher order
in ϕ2. The underlined terms are non-perturbative and generate vacuum zero modes - but only if
the Weyl ordering is used. The nonperturbative fieldsΩ(x), ϕ2(x), ϕ4(x), .... are non zero only if
the order parameter of the broken phase <Ψ(x) >= Φ0 6=0 i.e. if the coupling strength exceeds a
critical valueg > gcr. The nonperturbative fieldϕ2(x) has the following explicit form [9]:

ϕ2(x) =
1

4π

∫ ∫ Θ(k+
1 )Θ(k+

2 )
√

k+
1 k+

2

f (k+
1 ) f (k+

2 ){G+−
2 (k+

1 ,−k+
2 ;x)

a+(k+
1 )a(k+

2 )e
i
2(k+

1 −k+
2 )x + terms forG++

2 andG−−
2 }dk+

1 dk+
2 .
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The testfunctionsf (k+
i ) come in via the Fock expansion of the free field where they are required

to give a meaning to the operator valued distributionϕ1(x) . The dependence ofG2 onx is induced
by a nonperturbative,x-dependent back-ground fieldΩ(x) = Ω̃(k)e

i
2kx [9].

4.1 Equations forΩ(x) and ϕ2(x).

Equations of motion and the constraintΘ3 yield equations for the unknown amplitudesΩ,

G+−
2 ,G−−

2 (constrained and dynamical zero modes). They are obtained [9] by taking appropriate
matrix elements of the equations of motion according to:

< 0|EQM|0 > − > Ω, <q1|EQM|q1 > − > G+−
2 ,< q1q2|EQM|0 > − > G++

2

Due to the interaction termΦ3 this is a system of nonlinear equations. In the long wavelength
limit (k+− > 0) the amplitudes become small and the equations can be linearized. They are given
explicitely in [9]. Their symbolic structures are:

∆−1
Φ +KΦ ⊗

[
G+−

2 ⊕ G++
2

]
= 0 (A),

∆−1
ϕ+−

2
G+−

2 +Kϕ+−
2

⊗
[
G+−

2 ⊕ G++
2

]
= gΩ (B),

∆−1
ϕ++

2
G++

2 +Kϕ++
2

⊗
[
G+−

2 ⊕ G++
2

]
= gΩ (C).

The ∆−1
Φ ,∆−1

ϕ+−
2

,∆−1
ϕ++

2
are inverse propagators for the fieldsΩ, G+−

2 , G++
2 . TheKΦ,Kϕ+−

2
,Kϕ++

2

are integral interaction kernels. The strategy for the solution is: 1) Solve (B) and (C) in terms of
Ω. 2) Insert solution of (B) and (C) in (A). The result is a homogenous equation forΩ i.e. a
dispersion relation for the c-number fieldΩ from which the critical coupling and theβ -function
can be extracted.

4.2 Vacuum field contributions to interaction diagrams

Here we give an example for the action of the lowest order contributions ofthe nonperturbative
fieldsΩ andϕ2 in selfenergy diagrams of orderg2; in the diagram we denote these fields generically
by Φ1.

φ1

φ1 φ1 φ1

φ1

+
φ1

φ1

Φ1

φ1

φ1

Manifestation of nonperturbative vacuum effects in interaction diagrams.

In the perturbative diagram each vertex is made of 4 field operators likeϕ(−)
1 ϕ(+)

1 ϕ(+)
1 ϕ(+)

1 ,
where 3 of them are contracted pairwise between 2 vertices. In the corresponding nonperturbative
diagram the vertex factor isϕ(−)

1 ϕ(+)
1 Φ(+)

1 ϕ(+)
1 whereΦ(+)

1 can either come fromΩ or from the
nonpertutbative part ofϕ2. Near the phase transition the nonperturbative fields are small. Therefore
diagrams with twoΦ1 - lines are omitted. It is clearly seen that the calculations, though being non-
perturbative, use perturbative techniques, the nonperturbative element residing in the construction
of Ω.
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5. Example with bosonic and fermionic fields

We consider the Lagrangian of the Yukawa model

L = ψ(iγµ∂ µ −m)ψ +2∂−Φ∂+Φ−
1
2

∂ 2
⊥Φ−

µ2

2
Φ2−gΦψψ

In this case the fermionic fields contribute to nonperturbative vacuum fieldsin the form of com-
posite fields built from fermion fields coupled to spinless scalars. As usual,if the fermion field
is written in terms of the upperψ1 and lowerψ2 component, the EQM splits into two coupled
equations: the first one is a genuine equation of motion, where the light conetime derivative ofψ1

is coupled toψ2; the second expresses the longitudinal space derivative ofψ2 throughψ1, which
means thatψ2 is a dependent quantity. Conventionallyψ1 andψ2 are called independent and depen-
dent fields respectively. The Lagrangian being singular one has to go through the Dirac-Bergmann
algorithm [10] to find all the constraints which are all related to the constrained nature of bosonic
and fermionic momenta. Here we list the canonical momenta and the corresponding constraints2:
πψ1 = 0; Θ1 = πψ1 ≃ 0; πψ+

1
= 0; Θ2 = πψ+

1
≃ 0; πψ2 = −iψ+

2 ; Θ3 = πψ2 ≃−iψ+
2 ≃ 0;

πψ+
2

= −iψ2; Θ4 = πψ+
2
≃−iψ2 ≃ 0; πΦ = 2∂−Φ; Θ5 = πΦ −2∂−Φ ≃ 0

The vacuum fieldΩ(x) is composed of a bosonic fieldΦvac and a fermionic contribution (ψψ)vac

and eventually more complicated combinations of them. The equations of motion forthe fermions
and bosons are respectively

(iγµ∂ µ −m)ψ = gΦψ (iγµ∂ µ +m)ψ = gΦψ

4∂+∂−Φ−∂ 2
⊥Φ+ µ2Φ−gψψ = 0

with solutions (inspired by the Haag series):

ψ = gGψ0Φψ +ψ0 Gψ0 =
1

iγµ∂ µ −m
.

ψ = gGψ0Φψ +ψ0 Gψ0 =
1

iγµ∂ µ +m
.

Φ = gGϕ1ψψ +ϕ1 +Ω Gϕ1 =
1

4∂+∂−−∂ 2
⊥ + µ2

In the last equationϕ1 is the free bosonic field (the first term in the Haag series; see section 3.1).
The free fermion field is denoted byψ0

i , i = 1,2. The zero modeΩ is obtained by projection of the
EQM for Φ on the vacuum sector:

µ2Ω = g(ψψ)vac, i.e. µ2Ω0 = g < 0|ψψ |0 >

Ω0 is given entirely in terms of< 0|ψψ |0 >. In lowest order one finds

< 0|ψψ |0 >= −
1

4π3 m
∫

dp3

p+
f 2(p+,

−→p⊥)

2For the meaning of the weak equality≃ see [10]
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In the iterative solution of these equations the Weyl ordering of products of operators must be
used in order to keep track of the effects of the zero modes. Iteration of the equations of motion
changes the functional dependence ofΩ0 on< 0|ψψ |0 > and the value of< 0|ψψ |0> itself, but
the fact that the bosonic zero mode is determined by the fermionic condensateremains valid.

Things would be different in the Yukawa-Higgs model where the bosonic mexican hat po-
tential yields as a first approximation an independent fixing of the bosonic zero modeΩ0. The
coupling termgΩ0ψψ acts then as a mass term (mass generation in the standard model via Higgs
mechanism).

6. Concluding remarks

The combination of the description of the signature of nontrivial vacua by zero modes of
the fields with the techniques of the causal approach has highly nontrivialand remarkable conse-
quences:

1. The inclusion of nonperturbative vacuum effects in the calculation of the S-matrix.

2. The possibility to construct a mathematically sound theory which avoids all divergences
related to the use of ill-defined distributions in the standard approach.

These two properties qualify the Causal Light Front Field Theory as an ideal candidate for
studying nonperturbative physics
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