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Distribution amplitude for the photon-pion transition
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The exclusive production ofππ andπρ in hardγ∗γ scattering in the forward kinematical region

where the virtual photon is highly off-shell are studied through theγ → π− Transition Distribution

Amplitudes. The calculation is based on a covariant Bethe-Salpeter approach, applied to the

Nambu - Jona-Lasinio model, for the determination of the pion bound state. In particular it

is shown that the pion pole contribution produces a large enhancement of the differential cross

section for the pion pair production with respect to previous estimates.
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TDAs forγ → π transition A. Courtoy

The study of the exclusive meson pair production inγ∗γ scattering allows the introduction of
a new kind of distribution amplitudes [1]. At small momentum transfert and in the kinematical
regime where the photon is highly virtual, a factorization between the perturbative and the nonper-
turbative regimes is assumed to be valid. The amplitude for such reactions, represented in Fig. 1,
can be written as a convolution of a hard partMh, with a meson distribution amplitudeφM and
a soft part describing the photon-pion transition. This soft part is calledTransition Distribution
Amplitude (TDA).

γ∗(q)

γ(pγ)

M+(pM+)

φ(x)

Mh

π−(pπ)

TDA

Figure 1: Factorization for the amplitude of the processγ∗γ → π−M+ at small momentum transfer.

Cross section estimates for the processes

γ∗Lγ → π+π− , γ∗Lγ → ρ+π− (1)

have been proposed in Ref. [2] using for the TDA at-independent double distributions, in a first
approach, and, in a second, thet-dependent results of Ref. [3]. In this paper we evaluate these
cross sections in our formalism. To do so we compare results for the TDAs calculated in different
realistic models for the pion [4, 5, 6]. Since the results obtained are in agreement, we choose to
use the results of a single model calculation, i.e. the NJL model [5]. As shownin Ref. [7], the
estimate for theππ production increases by a factor about 60 due to the presence of the pion pole
contribution in our analysis.

1. Transition Distribution Amplitudes

We introduce the light-front vectors ¯pµ = P+ (1,0,0,1)/
√

2 andnµ = (1,0,0,−1)/(
√

2P+)

whereP+ is the plus1 componente of the vectorP =
(

pπ + pγ
)

/2. The momentum transfer is
defined as∆ = pπ − pγ , with t = ∆2 andP2 = m2

π/2− t/4. The skewness variable describes the
loss of plus momentum of the incident photon, i.e.ξ =

(

pγ − pπ
)+

/2P+, and its value ranges
between−1 < ξ < −t/

(

2m2
π − t

)

. With these conventions, the vector and axial TDA are defined
by

∫

dz−

2π
eixP+z− 〈

π±(pπ)
∣

∣ q̄
(

−
z
2

)

γ+τ± q
( z

2

)

∣

∣γ(pγε)
〉

∣

∣

∣

z+=z⊥=0

1We introduce the light-cone coordinatesv± =
(

v0±v3
)

/
√

2 and the transverse componentsv⊥ =
(

v1,v2
)

for any
four-vectorvµ .
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Figure 2: Theπ+-γ TDAs for t = −0.1 GeV2 of Refs. [4, 6] formπ = 0 MeV and Ref. [5] formπ = 140
MeV. On the left, the vector TDA forξ =±0.5 as a single (solid) curve for the results of both the NJL model
and SQM (these four curves are indistinguishable); the result of the non-localχQM calculation forξ = 0.5
(dotted line) and forξ = −0.5 (dashed-dotted line). On the right, the axial TDA.

=
1

P+
ieεν ε+νρσ Pρ (pπ − pγ)σ

Vγ→π±
(x,ξ , t)√
2 fπ

,

(1.1)
∫

dz−

2π
eixP+z− 〈

π± (pπ)
∣

∣ q̄
(

−
z
2

)

γ+γ5 τ± q
( z

2

)

∣

∣γ
(

pγε
)〉

∣

∣

∣

z+=z⊥=0

= ±
1

P+

[

− e
(

~ε⊥ · (~p⊥π −~p⊥γ )
) Aγ→π±

(x,ξ , t)√
2 fπ

+ e
(

ε · (pπ − pγ)
) 2

√
2 fπ

m2
π − t

ε(ξ ) φπ

(

x+ξ
2ξ

)

]

.

(1.2)

where the pion decay constant isfπ = 92.4 MeV, ε (ξ ) is equal to 1 forξ > 0 and to−1 for ξ < 0
andφπ(x) is the pion DA. Here we have modified the definition given in [1, 2] in order to introduce
the pion pole contribution in the Eq. (1.2) [3, 5]. This pion pole term describes a point-like pion
propagator multiplied by the distribution amplitude (DA) of an on-shell pion. It contributes to the
axial current through a different momentum structure and must be subtracted in order to obtain de
axial TDA. With these -model independent- definitions we recover the sum rules

∫ 1

−1
dx D(x,ξ , t) =

√
2 fπ

mπ
FD (t) , D = V,A (1.3)

with the standard definitions for the form factorsFV,A appearing in theπ± → ℓ±νγ decay [8].
Notice that the on-shell pion DA obeys the normalization condition

∫ 1
0 dxφπ(x) = 1. A model

calculation forA(x,ξ , t) implies the evaluation of all diagrams contributing to the matrix element
of the axial current and to extract from this result the pion pole contribution calculated in the same
model.

Recently the pion-photon TDAs have been calculated in the Spectral QuarkModel (SQM)
[4], the Nambu - Jona-Lasinio model with Pauli-Villars regularization procedure (NJL) [5] and
a nonlocal chiral quark model (χQM) [6]. A comparison of the TDAs obtained in these three
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models has been shown in Ref. [9]. We here recall the conclusion of the comparison by plotting the
different results for theπ+ → γ transition in Fig. 2. There is good agreement between the different
studies of the pion-photon TDAs in spite of the discrepancy coming from the vector TDA for a
negativeξ in the non-localχQM. Thus, in the present analysis, we can concentrate on the TDAs
obtained in a single model, e.g. the NJL model [5]. Theγ-π TDAs defined in Eqs. (1.1-1.2) are
connected to theπ-γ TDAs through theT or CPT symmetries; we find2 [9]

Dγ→π+
(x,ξ , t) = Dπ+→γ (x,−ξ , t) & Dγ→π−

(x,ξ , t) = Dπ+→γ (−x,−ξ , t) , (1.4)

with D = V,A.

2. Exclusive meson production in γ∗γ scattering: Cross section estimates

The γ∗γ → M+π− processes, withM = ρL or π, are subprocesses of thee(pe) + γ
(

pγ
)

→
e(p′e)+ M+ (pM)+ π− (pπ) processes. We follow all the kinematics given in Section III. A and
Fig. 3 of Ref. [2], but withn.p = 1. In particular, for massless pions,

Q2 = −q2 = −(pe− p′e)
2 , seγ =

(

pe+ pγ
)2

,

pγ = (1+ξ )p̄, pπ = (1−ξ )p̄+
~∆⊥2

2(1−ξ )
n+~∆⊥,

q = −2ξ p̄+
Q2

4ξ
n , (2.1)

where∆T = (0,~∆⊥,0) and therefore∆2
T = −~∆⊥2. Notice that~∆⊥2 = (−t)(1− ξ )/(1+ ξ ), with

t < 0. The longitudinal polarization of the incoming virtual photon is defined through the conditions
ε2

L = 1 and thatεL.q = 0,

εL =

(

2ξ
Q

p̄+
Q
4ξ

n

)

;

while the real photon polarization is defined byε · pγ = 0, which leads toε− = 0 together with the
gauge conditionε+ = 0.

The differential cross sections are given by3 [2]

dσeγ→eρ+
L π−

dQ2dtdξ
=

64π2

9

α3
elm

seγ Q8 (−t)
1−ξ

(1+ξ )4

(

2ξ seγ − (1+ξ )Q2) {

ℜ2Iρ
x +ℑ2Iρ

x

}

;

(2.2)

dσeγ→eπ+π−

dQ2dtdξ
=

64π2

9

α3
elm

seγ Q8(−t)
1−ξ

(1+ξ )4

(

2ξseγ − (1+ξ )Q2)







(

ℜIπ
x −

3
4π

Q2Fπ
(

Q2
)

t −m2
π

)2

+ℑ2Iπ
x







,

(2.3)

2Observe that we have changed the sign in the definition ofAγ→π−
with respect to reference [9].

3A factor of 1/4 is missing in Eq. (23) of Ref. [2]. This typo does not affect to the numerical results reported there
[10].
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with

Iρ
x =

αs

6

∫ 1

−1
dx

∫ 1

0
dz

(

fρ√
2 fπ

)

φρ(z)
1

z(1−z)

(

Qu

x−ξ + iε
+

Qd

x+ξ − iε

)

V(x,ξ , t) ; (2.4)

Iπ
x =

αs

6

∫ 1

−1
dx

∫ 1

0
dzφπ(z)

1
z(1−z)

(

Qu

x−ξ + iε
+

Qd

x+ξ − iε

)

A(x,ξ , t) , (2.5)

wherez is the light-cone momentum fraction carried by the quark entering the mesonM+, fρ =

0.216 GeV. The term proportional toFπ on the r.h.s. of Eq. (2.3) is the pion pole contribution to
the amplitude coming from the second term of Eq. (1.2).

From Eqs. (2.2-2.3) it can be observed thatξ ≥ Q2/
(

2seγ −Q2
)

. In other words, there is a
(positive) lower limit on the value ofξ . It is indeed a particularly interesting restriction because
the sign ofξ defines the shape of the axial TDA.

We proceed now to the evaluation of the integrals (2.4-2.5). The meson DA,φM (z) , is chosen
to be the usual asymptotic normalized meson DA, i.e.φM(z) = 6z(1− z), what cancels thez-
dependence of the hard amplitude. Because of the non perturbative information they contain, the
TDAs have to be evaluated in a model. We here focus on the TDAs calculated inthe NJL model [5].
This approach is based on the determination of the pion as a bound state through the Bethe-Salpeter
equation, what guarantees the preservation of all the invariances of theproblem. As a consequence,
the obtained TDAs explicitly verify the sum rules, the polynomiality condition and have the correct
support inx. The NJL model gives a good description of the low energy pion physics [11] and it has
already been applied to the study of the pion parton distribution (PD) [12] and the pion generalized
parton distribution (GPD) [13]. Once evolution is taken into account, the calculated PD is in good
agreement with the experimental one [12]. The QCD evolution of the pion GPDcalculated in the
NJL model has been studied in [14]. More elaborated studies of the pion PDhas been done in, e.g.,
the Instanton Liquid Model [15], lattice calculation based models [17] using non local lagrangians
[16], which confirms that the result obtained in the NJL model for the PD is a good approximation.
It is therefore of interest to obtain the cross sections for the processes(1) in such a realistic model.

In order to numerically estimate the cross sections, we need to fix the strong coupling constant
αs. In Ref. [18] it is indicated that a large value ofαs (αs = 1) should be used together with the
asymptotic DA. We hence use the valueαs = 1.

The result for the cross section forρ production is shown in Fig. 3 as a function ofξ . The
cross section is largely dominated by the imaginary part (dotted line) of the integral of Eq. (2.4).
Comparing with the previous obtained results in Ref. [2], we observe that our predictions are higher
by a factor 2 or 3.

The ππ production is described by Eq. (2.3). The pion pole term of the axial current leads
to a contribution proportional to the pion form factorFπ(Q2). If we use the asymptotic form of
the pion DA,φπ (z) with z = (x+ξ )/2ξ , for the evaluation of this contribution we obtain the
Brodsky-Lepage result forFπ(Q2),

3
4π

Q2Fπ
(

Q2) = 12αs f 2
π (2.6)

The cross section for pion production as a function ofξ is given on the right of Fig. 3. We notice an
enhancement of about 2 orders of magnitude [7] with respect to the firstestimates given in Ref. [2],
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Figure 3: Theeγ → e′M+π− differential cross section withM = ρL on the left andM = π on the right. The
plots are given as functions ofξ for Q2 = 4 GeV2, seγ = 40 GeV2, t = −0.5 GeV2.

due to the presence of the pion pole in Eq. (2.3). The cross section is indeed dominated by the
pion pole contribution (dashed line) whose behavior is governed by the pion FF. The latter being
experimentally determined, the pion pole contribution is perfectly known. Thusone could extract
information about the axial TDA from the interference term (dotted line) whose contribution is
more important than the pure axial TDA’s contribution (dotted-dashed line).

We finally remark that, contrary to the contributions coming from the TDAs, the pion pole
strongly depends on the momentum transfer for small values oft. Neglecting the pion mass, the
cross section for this contribution goes liket−1. For large values oft the behaviour of all contribu-
tions is ast−1.
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