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1. Introduction

One of the challenges in quantum chromodynamics (QCD) ishaghe relativistic bound
state problem. In the light-cone Hamiltonian approachiffjttcone wave functions are boost in-
variant and have a well-defined probability interpretation contrast to the Bethe-Salpeter equa-
tion. It is necessary to have reliable light-cone wave fiamst, especially if one wants to calculate
exclusive reactions. Various approaches have been prdpossmpute such wave functions. In
ref. [2], Simula uses the usual equal-time Hamiltonian aadgforms the resulting wave functions
into the light-cone form with the help of kinematical on-Bleguations. In ref. [3], Simonov and
collaborators derive a light-cone Hamiltonian in a modehwgertain string degrees of freedom.
More ambitious is the construction of an effective Hamiltamincluding the QCD gauge degrees
of freedom explicitly and then solving the bound-state fgob For mesons, this approach [4, 5]
still needs many parameters which have to be fixed. Attemgie lalso been made to find the
valence-quark wave function for mesons with a simple Hamiétn [6].

A necessary input for the calculation of a two-body Fockesiatan adequate potential in
the light-cone Hamiltonian. For the equal-time Hamiltonend heavy quarks the calculation of
Wegner-Wilson loops provides the form of the non-pertuviegtotential at large distances. Numer-
ical lattice simulations of QCD can give an accurate noatigktic Hamiltonian. The continuum
stochastic vacuum model [7, 8] allows one to calculate vacexpectation values of Wegner-
Wilson loops using perturbative and non-perturbative figténgth correlation functions as input.
One can compute the loop expectation va{WgC]) in terms of a gauge-invariant bilocal gluon
field-strength correlator integrated over the minimal acefby using the non-Abelian Stokes’ the-
orem and the matrix cumulant expansion in the Gaussian ajppation. The gluon field-strength
correlator has perturbative and non-perturbative compisnd he stochastic vacuum model is used
for the non-perturbative low-frequency background fieldl] &he perturbative gluon exchange is
used for the additional high-frequency contributions. Takulation of the expectation value of a
Wegner-Wilson loop along the imaginary-time directionggithe heavy quark-antiquark potential
with color-Coulomb behavior for small and confining linesserfor large sources’ separations [9].

Since the computation of the VEV for the Wegner-Wilson loap be done completely ana-
Iytically, also other orientations of the loop can be cheseg. a loop where the quark-antiquark
pair moves along the z-direction. By transforming to Minlslivspace-time, the dependence of
the interaction potential on longitudinal and transversgasations of the pair can be obtained this
way. Approaching light-like trajectories of the quarkigoark pair, we have deduced in ref. [10]
a light-cone Hamiltonian, which contains confinement frorst forinciples.

This article gives a brief survey of our paper ref. [11], inigthwe would like to complete
the Hamiltonian of ref. [10] by including quark self-energffects, quark wave-function renor-
malization and spin-spin interactions phenomenologicatld evaluate the eigenvalues of the full
Hamiltonian for light and heavy mesons variationally.

2. Thelight-cone Hamiltonian

The light-cone Hamiltonian derived in ref. [10] for lightleace quarks of mags has a sim-
ple confining potential, the magnitude of which is set by thimg tensiono = 0.18 Ge\2. In the
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notations of reference [12], we introduce as dynamicakiseis the light-cone momentum fraction
& =k /P with |£| < 1/2 and its conjugate variable, namely the scaled longitudipace coordi-
natev/2p = P*tx_. The effective “distance* between the quarks is given bysttade-free light-cone
longitudinal distanced and the transverse distange multiplied by the bound-state mass. Note
that the transverse confinement scale is related to thesesfistent mass of the bound stMé.
The so-obtained light-cone Hamiltoni&hc = 2P"P~ is Lorentz invariant under boosts, because
the variables, p,k,, andx, are boost invariant. The transverse momentum and the latigél
space coordinate are represented by the operators

kL:TDL (2.1)
and 14
p:i_&a (2.2)

so that the Hamiltonian reads £ 1):

2. 02
g +k ~
HY(u?) = M2 = 7(11/4_ flz) +204/p2+ M2 (2.3)

The other, non-confining, potential has been worked outlaitni and is treated in ref. [11] in
more details.

The best way to find the two-body wave function is to use asalbes the light-cone mo-
mentum fractioré and the transverse quark-antiquark separationlt is expected, that with the
Hamiltonian of eq. (2.3), the meson masses, and espedmlpibn mass, are not described cor-
rectly. Additional terms are needed for a realistic valeqaark Hamiltonian. Indeed, it is a matter
of a simple variational calculation to find out that the eigdues of the light-cone Hamiltonian in
the form (2.3) are of the order & = 1.6 GeV for u? = 0. This is obviously too high compared
with good valenceig-mesons like the vector mesons, which have an energy of 800 fbtdight
quarks. First, the spin structure of the meson is not prgpeken care of in the spin-independent
expression above. Secondly, one expects quark self-ewerggctions, which are especially im-
portant for small current quark masses.

In the literature, the quark self-energy has been deducadl tihe stochastic vacuum model in
two calculations [13, 14]. In the first version [13]

40
B (K%)= ——

has been derived from the confining gluon field configuratioteracting with the g-field. In
the second version [14], Simonov takes into account the medfjq state with mas# and finds:

(2.4)

40

Do (k) = —— (1) (2.5)
with °
ot) =t /0 22K, (t2)e 7, (2.6)
where
t=(u+M/2)a (2.7)
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Here u is the current quark mas#) is the uncorrected meson mass= 0.302 fm is the
correlation length of the field-strength correlator. Theealedence of the self-energy correction
Az (p?) on the meson mass is shown in Fig. 1.
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Figure 1: Self-energy correctior, (uz) for vanishing current quark mags= 0 as a function of the
uncorrected meson makk

This self-energy correctiofy, (uz) of eq. (2.5) agrees with the constant self-energy cornectio
of eq. (2.4)7; (uz) = —0.23Ge\? for M = 0. The self-energy correction is negative for light
flavors, and vanishes for heavy quarks, i.e. for heavy-mesmssed. Such a functional behavior
looks rather reasonable. Elimination of higlygrgluon states produces an attractive interaction.

3. Variational solution of the light-cone Hamiltonian

We evaluate the Hamiltonian for zero current quark magges 0, but with quark self-energy
correctionA; (u?) :
< W|Hic(Ap?)|W >= M2, (3.1)

We compute the vacuum expectation value of the Hamiltorgai{Z3), using a variational method.
Simple trial wave functions factorize in a longitudinal veafunction@(&) and a transverse wave
function ¢ (x, ). We take the following two trial wave functior(s = 1,2), where the first one has
the conventional form of -dependence:

Wi(£.%1) = (&) - p(x,) fori=1,2 (3.2)
1 X2
Bxu) = exp| - o] (3.3)
1 1/2
with (&) = V6- (Z — 52> (3.4)
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and@(§) = ﬁ (% - 62) " (3.5)

Xo being the mean transverse extension of the meson.
The wave functions vanish at the kinematical boundafées- i%) which correspond to the
limits of relative infinite longitudinal momenta in the noalativistic description:

W; (E = —%,M) =W, (E = %7XL> =0. (3.6)

In both cases, we get self-consistent transcendental iegsdbr M, which can be solved
numerically. In Fig. 2, we plot the resultifg as a function of the transverse-extension parameter
Xg of the trial wave functiong¥;. The trial wave functiorV; leads to a smaller value of the
meson mass, which lies in the expected range of light vengsen masses. The higher mass
corresponding to the trial wave functié¥y comes about from the higher longitudinal momenta in
this wave function. The rms-extensioQé< xi > = Xp;j of the mesons can be read off from the
minima of both curves. We obtain

Xo,1 = 0.8fm andxp > = 0.86fm. (3.7)
The corresponding mass values are

M; = 0.85GeV andM; = 0.89GeV. (3.8)
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Figure 2: M(xo) for the trial wave function®; (full line) and¥, (dashed line). The Hamiltonian includes
the self-energy correctioy (1?).
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4. Chiral symmetry breaking

Chiral symmetry breaking has been a challenging aspecedfght-cone theory. It is known
in equal-time theories that the vacuum is very complicated ligher Fock components of the
guark-antiquark wave function are needed in order to repredhe low-energy properties of the
pion correctly. An interaction of the Nambu—Jona-LasimNdl() type leads to a quark condensate,
the excitations of which are massless Goldstone pions. ddight-cone approach, the most de-
veloped calculation uses the NJL-model with a vector imtioa [15] and obtains very interesting
differences of the light-cone wave function between thaaremesons and pions. In our frame-
work, the complicated self-energy correctib@(uz) of the constituent quark can give the correct
chiral-symmetry behavior of the pion mass. We apply the Fam-Hellmann theorem [16, 17] to
the light-cone Hamiltonian, which has dimensionass?,

OM2 [ dHic
au _< oy > @D

and investigate what happens to the pion-mass sqifed 0, when the current quark mass
U increases to finite valugs =~ 0. Especially one may ask whether the Gell-Mann—-Oakes—&tenn
relation still holds. How can the pion mass squared vanigalily with the quark mass? A naive
kinetic term cannot do that because thE? O u2. In the Hamiltonian (2.3) with, (4?) we
have, however,

_4_a< 1 >5L(t>‘
m\1/4-82/ ou t=Mo/2a

oM?

(4.2)

(9’.1 ‘[J:O 1-o xi

The functiong(t) is defined viaA; (uz) by means of eq. (2.5). Fdfy we take the averaged
meson mass d¥ly = 0.67 GeV, and for the transverse extension we take 0.8fm of eq. (3.7).
We get a linear dependence of the pion mass squared on thergaas, which has a slope

IM2
~ 3.38 GeV. 4.3
ou ‘u:O € (4.3)
We compare this value with the Gell-Mann—Oakes—Rennetioal§l8, 19]
< 0|qq/0 >
M2 = (~2u) <2990 (4.4
T
which amounts to a theoretical value for the same slope:
2<0|qq0
_$ ~3.20 GeV, (4.5)
T

where the absolute value of the quark condensat@. 210 GeV}® andF,; = 0.093 GeV [20].
The relative difference between our light-cone calcuratbeq. (4.3) and the empirical val@%2
of eq. (4.5) is only 6%. This is a very good result, but as onmes=e from eq. (4.2) it depends
on the self-energy correcticm(uzz). Besides the quantitative success, this result stimufatdser
studies of the self-energy correction in the light-conethieHere the new possibilities opening up
by the AdS/QCD approach [21, 22] can play an important role.
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