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We study proton-antiproton annihilation into ΛcΛ̄c pairs within the generalized parton picture.
Our starting point is the double handbag diagram which is shown to factorize into soft generalized
parton distributions for the p → Λc (and p̄ → Λ̄c) transition and a hard subprocess amplitude for
uū→ cc̄. Thereby the mass of the charm quark is taken as the hard scale so that our results are not
restricted to large scattering angles and/or incredibly large energies. Modelling the generalized
parton distributions for the p → Λc transition by an overlap of simple quark-diquark light-cone
wave functions we make first predictions for p→Λc transition form factors and unpolarized pp̄→
ΛcΛ̄c cross sections. Our findings may become interesting in view of forthcoming experiments at
FAIR in Darmstadt.
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1. Introduction

Exclusive hadronic reactions which require the production of heavy quark-antiquark pairs are,
to a large extent, cleaner and easier to handle than those in which only light flavors are involved. On
the one hand, certain elementary reaction mechanisms can already be ruled out from the beginning
due to the small heavy-flavor content of the quark sea. On the other hand, the mass of the heavy
quark itself can serve as a hard scale so that there is a good chance that QCD perturbation theory
provides a substantial part of the process amplitude already at moderately large energies.

The simplest elementary reaction mechanism for the process we are interested in, namely
pp̄ → ΛcΛ̄c, is depicted in Fig. 1. This is the mechanism which we assume to be dominant in the
forward hemisphere for energies well above production threshold. We are going to analyze it in
terms of generalized parton distributions [1],[2].
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Figure 1: Double-handbag contribution to pp̄ → ΛcΛ̄c.

2. Kinematics

We denote particle momenta and helicities as shown in Fig. 1. For our purposes it is most
convenient to work in a center-of-mass frame, in which the light-cone (LC) components of the
proton and Λc momenta are parameterized as 1

p =

[

(1+ξ ) p̄+,
m2 +∆2

⊥/4
2(1+ξ ) p̄+

,−∆⊥
2

]

and p
′
=

[

(1−ξ ) p̄+,
M2 +∆2

⊥/4
2(1−ξ ) p̄+

,
∆⊥
2

]

, (2.1)

respectively. M stands for the Λc mass and m for the mass of the proton. The corresponding
antiparticle momenta are q = [p−, p+,∆⊥/2] and q′ = [p′−, p′+,−∆⊥/2]. The average of proton
and Λc momenta p̄ = 1

2 (p+ p′) defines the longitudinal direction and the 4-momentum transfer is
specified by ∆ = p′− p = q−q′. The relative momentum transfer in longitudinal direction is given
by the “skewness parameter”

ξ ≡ p+− p′+

p+ + p′+
= − ∆+

2 p̄+
. (2.2)

1We use the following convention for the LC components of a 4-vector v: v =
[

v+,v−,v⊥
]

with v± = 1/
√

2
(

v0 ± v3)

and v⊥ =
(

v1,v2).
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3. Factorization

If the dynamical mechanism underlying pp̄ → ΛcΛ̄c scattering is given by Fig. 1, the corre-
sponding scattering amplitude can be written as (kav

i = (ki + k′i)/2)

Mµ ′ν ′
,µν =

∫

d4kav
1 θ

(

kav+
1

)

∫

d4z1

(2π)4 eikav
1 z1

∫

d4kav
2 θ

(

kav−
2

)

∫

d4z2

(2π)4 eikav
2 z2 H

(

k′1,k
′
2;k1,k2

)

×〈Λc : p
′
,µ

′ |T Ψ̄c
(

−z1
2

)

Ψu
(z1

2

)

|p : p,µ〉〈Λ̄c : q
′
,ν

′ |T Ψ̄u
(z2

2

)

Ψc
(

−z2
2

)

| p̄ : q,ν〉,
(3.1)

with H (k′1,k
′
2;k1,k2) representing the scattering amplitude for the elementary subprocess

u(k1,λ1) ū(k2,λ2) → c(k
′
1,λ

′
1) c̄(k

′
2,λ

′
2) . (3.2)

The hadronic matrix elements describe the emission of a light (anti)quark by the (anti)proton and
the absorption of a charm (anti)quark by the (anti)Λc . For better readability we have suppressed
helicity labels as well as color and spinor indices (and corresponding sums) for the quarks.

In order to simplify the right-hand-side of Eq. (3.1) we make a few plausible assumptions.
In analogy to Compton scattering [3], [4] we assume that the process is dominated by partons
with restricted virtualities and transverse momenta. To be more precise, we demand for the ac-
tive (anti)quarks that k2

i . Λ2 and |k′2i −m2
c| . Λ2 (cf. Fig. 1 for the assignement of (anti)quark

momenta). The relative transverse momentum components should satisfy 2

k̃
2
⊥i/xi . Λ2, k̂

′2
⊥i/x ′

i . Λ2 , (3.3)

with Λ being a hadronic scale of the order of 1 GeV and mc the charm-quark mass. The restrictions
for the transverse momenta are supposed to hold in the hadron in/out frames (tilde/hat), in which
the corresponding parent hadrons carry no transverse momenta. Analogous constraints should also
hold for spectator partons. Furthermore, the hadronic matrix elements represented by the blobs
in Fig. 1 are assumed to exhibit a pronounced peak at x0 = mc/M ≈ 0.6− 0.7. This assumption
reflects the expected behavior of light-cone wave functions for the Λc and is also supported by
similar observations for heavy-quark fragmentation functions.

Since the virtuality of the gluon in the subprocess amplitude has to be at least 4m2
c , it occurs

to be natural to take the charm-quark mass mc as a hard scale. Under the foregoing assumptions
on the parton momenta it is then a good approximation to neglect the relative transverse momenta
(k̃⊥i and k̂

′
⊥i) of the (anti)quarks in the subprocess amplitude H (k ′1,k

′
2;k1,k2) and to replace the

momenta of the active quarks k(′)
i by (on-shell) momenta k̄(′)

i which are collinear to those of the
corresponding hadrons. With these approximations in the subprocess amplitude most of the inte-
grations in Eq. (3.1) can be done analytically. The resulting delta functions enforce a light-like
separation of the fields in the hadronic matrix elements. This allows us to drop the time ordering
of the fields. Due to our assumption on the hadronic matrix elements it is also justified to apply a

2The plus-components of parton momentum k and hadron momentum p are related by k+ = xp+. For further
purposes it is also convenient to introduce an “average” momentum fraction of the active quarks, i.e. x̄1 = (kav+

1 )/( p̄+)

(and analogously for the active antiquarks)
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“peaking approximation” to the subprocess amplitude (i.e. replace all x i by x0). In this way we are
able to write the hadronic amplitude as a product of integrals over soft hadronic matrix elements
with a hard partonic subprocess amplitude:

Mµ ′ν ′ ,µν(p′,q′; p,q) = H
(

k̄′1, k̄
′
2; k̄1, k̄2

)

|
x(′)

i =x0

×
∫

dkav+
1 θ(kav+

1 )

∫

dz−1
2π

eikav+
1 z−1 〈Λc : p

′
,µ

′ |Ψ̄c
(

−z−1
2

)

Ψu
(

z−1
2

)

|p : p,µ〉

×
∫

dkav−
2 θ(kav−

2 )

∫

dz+
2

2π
eikav−

2 z+
2 〈Λ̄c : q

′
,ν

′ |Ψ̄u
(

z+
2
2

)

Ψc
(

−z+
2
2

)

| p̄ : q,ν〉.

(3.4)

The subprocess amplitude can be calculated perturbatively, whereas the hadronic matrix elements
describe the non-perturbative transitions of the (anti-)proton to the (anti-)Λc by emission of a (ū)
u quark and reabsorption of a (c̄) c quark. It is just the hadronic matrix elements which give rise
to generalized parton distribution functions (GPDs) and to form factors, which are essentially 1/x
moments of the GPDs [1], [2]. Therefore we will have a closer look at them.

After some algebraic manipulations (insertion of energy- and helicity-projectors, etc.) the first
double integral in Eq. (3.4) can be split up into three (independent) terms of the form

∫ 1

ξ

dx̄1
√

x̄2
1 −ξ 2

p̄+
∫ dz−1

2π
eix̄1 p̄+z−1 〈Λc : p

′
µ

′ |Ψ̄c ΓΨu |p : pµ〉 =:
∫ 1

ξ

dx̄1
√

x̄2
1 −ξ 2

H
cu

µ ′µ (Γ) , (3.5)

where Γ = γ+,γ+γ5, or iσ+ j. γ+ and γ+γ5 demand for the same helicity of the emitted and absorbed
parton, whereas iσ + j is associated with a helicity flip. At this point the GPDs are introduced by
decomposing H cu

µ ′µ (Γ) into its covariant structures:

H
cu

µ ′µ(γ+) = ū
(

p
′
,µ

′
)

[

Hcu (x̄,ξ , t)γ+ +Ecu (x̄,ξ , t)
iσ+ν∆ν

M +m

]

u(p,µ) , (3.6)

H̃
cu

µ ′µ(γ+γ5) = ū
(

p
′
,µ

′
)

[

H̃cu (x̄,ξ , t)γ+γ5 + Ẽcu (x̄,ξ , t)
γ5∆+

M +m

]

u(p,µ) , (3.7)

H
Tcu

jµ ′µ(iσ+ j) = ū
(

p
′
,µ

′
)

[

Hcu
T (x̄,ξ , t) iσ+ j + H̃cu

T (x̄,ξ , t)
p̄+∆ j −∆+ p̄ j

Mm
+

Ecu
T (x̄,ξ , t)

γ+∆ j −∆+γ j

M +m
+ Ẽcu

T (x̄,ξ , t)
γ+ p̄ j − p̄+γ j

(M +m)/2

]

u(p,µ) .

(3.8)

Analogous results hold for the hadronic matrix elements of the antiparticles.
What enters the scattering amplitude are rather moments of the GPDs than the GPDs them-

selves. It is thus convenient to introduce form factors

Ri (ξ , t) =

∫ 1

ξ

dx̄1
√

x̄2
1 −ξ 2

Fi (x̄,ξ , t) , (3.9)

where Fi stands for any of the transition GPDs introduced in Eqs. (3.6) – (3.8). In our notation the
form factors RV , RT , RA, RP, ST , SV1, SS, SV2 correspond to the GPDs H, E, H̃, Ẽ, HT , ET , H̃T , ẼT ,
respectively.
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Combining Eqs. (3.5) – (3.9) and inserting them into Eq. (3.4) allows us to express the hadronic
helicity amplitudes in terms of these form factors and the hard subprocess amplitudes. With all
the eight, a priori unknown, form factors the hadronic amplitudes would exhibit a very rich and
complex structure. In the following we rather stick to the simplifying assumption that non-zero
orbital angular momenta play a minor role in the wave functions of the proton and the Λc. As can
be inferred from Eqs. (3.6) – (3.8) RV ,RA and ST (corresponding to the GPDs H, H̃ and HT ) are the
only form factors which do not necessarily require orbital angular momentum different from zero.
We therefore expect that

|RV |, |RA|, |ST | � |RT |, |RP|, |SS|, |SV1|, |SV 2|. (3.10)

Taking now only into account the dominant form factors RV ,RA and ST we end up with comparably
simple expressions for the pp̄ → ΛcΛ̄c helicity amplitudes:

M+±,+± =
CF

2NC

(

1−ξ 2)H+−,+−
(

R2
V ∓R2

A

)

, (3.11)

M−−,++ = 0, (3.12)

M−+,+− =
CF

NC

(

1−ξ 2)H−+,+−S2
T , (3.13)

M++,±∓ =
CF

2NC

(

1−ξ 2)H++,+−ST (RV +RA) , (3.14)

M∓±,++ = ∓ CF

2NC

(

1−ξ 2)H++,+−ST (RV −RA) , (3.15)

with

H+−,+− = −8π αs(x
2
0s) cos2(θcm/2) , H−+,+− = 8π αs(x

2
0s) sin2(θcm/2) , (3.16)

H++,+− = −8π αs(x
2
0s)

M√
s

sin θcm , H++,−+ = H++,+− . (3.17)

CF = 4/3 denotes the color factor, NC = 3 is the number of colors. The remaining helicity ampli-
tudes are related by parity invariance,

M−µ ′−ν ′,−µ−ν = (−1)µ ′−ν ′−µ+ν Mµ ′ν ′
,µν . (3.18)

For a more detailed account of these results and their derivation we refer to Ref. [5].

4. Modelling the GPDs

The kinematical requirement for the production of a cc̄ pair x & 2x0M/
√

s implies that x > ξ .3

We are thus in the DGLAP region where GPDs can be modelled as overlap of light-cone wave
functions of the proton and the Λc [6]. For the Λc it is certainly a good approximation to consider
only its valence Fock state. For the proton higher Fock states may be important, but the required
overlap with the Λc projects out only appropriate spin-flavor combinations of its valence Fock state.

As a first attempt we consider a simple quark-diquark model for the baryons. We assume that
a baryon consists of an active quark, which undergoes the hard scattering, and a diquark, which

3This is also the reason why the integral in Eq. (3.9) starts from ξ and not from 0.

5
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acts as a spectator. For the Λc the diquark has to be a spin-isospin scalar. In Ref. [7] pp̄ → ΛcΛ̄c

has already been studied within a quark-diquark model, but without using the general framework of
GPDs. For our present investigation we will take a quark-diquark wave function for the Λc which
is similar to the one used for a calculation of heavy-baryon transition form factors [8]:

|Λ+
c : ±〉 = |c±S[ud]〉 with ΨΛ(x,k⊥) = NΛ (1− x) e−

a2
Λ

x(1−x) k
2
⊥ e−a2

ΛM2 (x−x0)
2

x(1−x) . (4.1)

x denotes the momentum fraction carried by the quark. The quark-diquark wave function of the
proton, on the other hand, is chosen similar to the one in Ref. [7]:

|p : ±〉 = |u±S[ud]〉 with Ψp(x,k⊥) = Np (1− x) e−
a2

p
x(1−x) k

2
⊥ . (4.2)

These are pure s-wave wave functions and hence all GPDs apart of H , H̃ and HT will vanish.
Within this model the quark should have the same helicity as the baryon, which implies H̃ = H .
Likewise, also HT is non-zero and we even have

HT = H̃ = H , (4.3)

i.e. we are left with a single GPD. For the model wave functions (4.1) and (4.2) the overlap integral
can be done analytically with the result

H(x̄,ξ ,∆2
⊥) =

(

NΛNp

16π2

)

1
(1−ξ )3/2

(1− x̄)3 (

x̄2 −ξ 2)

a2
Λ (1−ξ )2 (x̄+ξ )+a2

p (1+ξ )2 (x̄−ξ )

× exp
[

−a2
ΛM2 (x̄−ξ − x0 (1−ξ ))2

(x̄−ξ )(1− x̄)

]

exp
[

−∆2
⊥

a2
Λa2

p (1− x̄)

a2
Λ (1−ξ )2 (x̄+ξ )+a2

p (1+ξ )2 (x̄−ξ )

]

.

(4.4)

With this GPD we can now evaluate the form factor R ≡ RV = RA = ST .

5. Numerical Results and Conclusions

For our numerical calculations the transverse size parameters aΛ = ap = 1.1 GeV−1 are chosen
in such a way that they provide a value of ≈ 300 MeV for the mean intrinsic transverse momentum
< k2

⊥ >1/2 of a quark inside a baryon. The wave function normalizations are fixed such that the
probabilities to find the quark-diquark states in a proton or a Λc are 0.5 and 0.9, respectively. The
x-dependence for the resulting transition GPD H at different values of t (i.e. different values of
the skewness parameter ξ ) is shown in Fig. 2. Shown in the same figure is also the corresponding
(scaled) transition form factor R as a function of t. With this form factor the unpolarized differential
and integrated cross sections for pp̄ → ΛcΛ̄c are easily evaluated. Corresponding predictions are
plotted in Fig. 3. The integrated cross section is of the order of nb, i.e. comparable in magnitude
with the result in Ref. [7]. This is still in the range of high precision experiments. Whether pre-
dictions from more realistic three-quark wave functions will be comparable to the outcome of this
simple quark-diquark model is presently under investigation [5].
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Figure 2: Left: The transition GPD H in the quark-diquark model versus x̄ at Mandelstam s =

30 GeV2 for ∆2
⊥ = 0 (solid), 2 (dashed), 4 (dotted) GeV2 (corresponding to −t = 1.13, 3.30, 5.54GeV2 or

ξ = 0.11, 0.12, 0.14). Right: The transition form factor R scaled by |t| in the quark-diquark model versus
|t|

[

GeV2] for Mandelstam s = 30 GeV2.
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Figure 3: Left: The pp̄ → ΛcΛ̄c differential cross section dσ/dΩ versus cosθcm at Mandelstam s =

30 GeV2. Right: The pp̄ → ΛcΛ̄c integrated cross section σ versus Mandelstam s.

Acknowledgments

A.T.G. acknowledges the support of the “Fonds zur Förderung der wissenschaftlichen Forschung in Öster-
reich” (project DK W1203-N08) and of the Karl-Franzens-Universität Graz for its KUWI grant.

References

[1] A. V. Radyushkin, Phys. Rev. D 56 (1997) 5524 [arXiv:hep-ph/9704207].

[2] X. D. Ji, Phys. Rev. D 55 (1997) 7114 [arXiv:hep-ph/9609381].

[3] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C 8 (1999) 409 [arXiv:hep-ph/9811253].

[4] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Phys. Lett. B 460 (1999) 204 [arXiv:hep-ph/9903268].

[5] A.T. Goritschnig, P. Kroll and W. Schweiger, in preparation.

[6] M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Nucl. Phys. B 596 (2001) 33 [Erratum-ibid. B 605
(2001) 647] [arXiv:hep-ph/0009255].

[7] P. Kroll, B. Quadder and W. Schweiger, Nucl. Phys. B 316 (1989) 373.

[8] J. G. Körner and P. Kroll, Z. Phys. C 57 (1993) 383.

7


