PROCEEDINGS

OF SCIENCE

New approach to the Parton Distribution Functions:
Self-Organizing Maps

Heli Honkanen*
Department of Physics and Astronomy, lowa State University, Ames, |A 50011, USA
E-mail: hel i @ ast at e. edu

Simonetta Liuti
Department of Physics, University of Virginia, Charlottesville, VA 22904-4714, USA
E-mail: sl 4y@i r gi ni a. edu

We propose a Parton Distribution Function (PDF) fitting t@ge which is based on an interac-
tive neural network algorithm using Self-Organizing Mag®©Ms). SOMs are visualization al-
gorithms based on competitive learning among spatiallemd neurons. Our SOMs are trained
with stochastically generated PDF samples. On every opditioin iteration the PDFs are clus-
tered on the SOM according to a user-defined feature and thst promising candidates are
selected as a seed for the subsequent iteration. Our malisgbas to provide a fitting proce-
dure that, at variance with the global analyses and stanuawcal network approaches, allows
for an increased control of the systematic bias by enablsgg interaction in the various stages
of the fitting process.

LIGHT CONE 2008 Relativistic Nuclear and Particle Physics
July 7-11 2008
Mulhouse, France

*Speaker.

TWe thank our computer science collaborators D. Brogan, thaban, Y. Loitiere and P. R. Reynolds. HH also
gratefully acknowledges the travel grant from Gary McCaRond and the “research equipment” from Sheila McCartor.
This work was financially supported by the US National ScéeRoundation grant no.0426971. HH was also supported
by the U.S. Department of Energy, grant no. DE-FG02-87ER403L is supported by the U.S. Department of Energy,
grant no. DE-FG02-01ER41200.

(© Copyright owned by the author(s) under the terms of the Gre&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



New approach to the Parton Distribution Functions: Self-Organizing Maps Heli Honkanen

1. Introduction

The cross sections for a number of hadronic reactions carobwuated using perturbative
Quantum Chromodynamics (pQCD) convoluting the pertuviesticalculable hard scattering co-
efficients with the non perturbative Parton DistributiomEtions (PDFs), that parametrize the large
distance hadronic structure. The accuracy with which tleertical predictions for observables
of such reactions can be compared against the high pre@sjperimental data thus depends, not
only on the accuracy of the hard scattering part calculatitwt also on the accuracy with which
the PDFs are known.

Currently, the established method to obtain the PDFs, ugdtldomajor PDF collaborations
(CTEQ [1] and references within, MRST [2], Alekhin [3], Ze{#] and H1 [5]), is the global
analysis supplemented with an error estimation using sdntkd¢f variant of the Hessian method
(see e.g. [6] for details). This powerful combination altofor both extrapolation outside the
kinematical range of the data and extension to multivagighkes, such as nuclear PDFs. However,
there are uncertainties related to the method itself, treatdficult to quantify, but may turn out to
have a large effect. The differences between the curretagjleDF sets indeed tend to be larger
than the estimated uncertainties [7], and these diffeseagain translate to the predictions for the
LHC observables, such as Higgs [8]Wf andZ production cross sections [1]. For details of PDF
uncertainty studies see e.g. Refs. [9].

Another approach to the PDF fitting has recently been prapbgehe NNPDF collaboration
[10], who have replaced typical functional form ansatzedisaylobal analyses with more complex
standard neural network (NN) solutions, and the Hessiahodeith Monte Carlo (MC) sampling
of the data. The NNPDF method circumvents many of the problglobal analyses suffer, such
as bias resulting from fixing a functional form and selectinguitable tolerancAy? needed in
Hessian method, and it relies on genetic algorithm (GA) Whworks on a population of solutions
for each MC replica of the data, thus having a lowered pddsilof getting fixed in local minima.
The estimated uncertainties for NNPDF fits are larger thasetof global fits, possibly indicating
that the global fit uncertainties may have been underestilnaihe complexity of NN results,
however, may also induce problems, especially when usegimely automated fitting procedure.
Since the effect of modifying individual NN parameters iknown, the result may exhibit strange
or unwanted behaviour in the extrapolation region, or imieetn the data points if the data is sparse.
Implementation of information not given directly by the @asuch as nonperturbative models,
lattice calculations or knowledge from prior work in gerlera also difficult in this approach.

The new PDF fitting method we have recently proposed in Ré&f.fdlies on the use of Self-
Organizing Maps (SOMs), a subtype of neural network. Tha wfeour method is to create means
for introducing “Researcher Insight” instead of “Theocati bias” by giving up a fully automated
fitting procedure, and eventually to develop an interadiitfig program which would allow us to
combine the best features of both the global analysis anNiRDF approach.

2. Sef-Organizing Maps

The SOM [12] is a visualization algorithm which attemptsépresent all the available obser-
vations with optimal accuracy using a restricted set of ned8OM consists of nodes, map cells,
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which are all assigned spatial coordinates, and the togaydthe map is determined by a chosen
distance metridMmap Each celli contains a map vectdf, that is isomorphic to the data samples
used for training of the neural network. For a simple 2-disienal rectangular lattice, our choice
for the SOM shape, a natural choice for the topologly;is,y) = 2i2:1 IXi — Vil

The implementation of SOMs proceeds in three stages: Iliplindtion of the SOM (see
Fig. 1), 2) training of the SOM (Fig. 1) and 3) associating tta¢a samples with a trained map,
i.e. clustering. For the details of the SOM implementatigee [11].
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Figurel: Left: SOM initialization,Right: SOM training.

In the end of the training stage, cells that are topologiaziyse to each other have map vectors
which are most similar to each other (according to a chosmilagity metric Myats) compared to
all the other map vectors. In the matching phase the acttalisianatched against the map vectors
of the trained map, and thus get distributed on the map acwptd the feature that was used as the
similarity criterion. Clusters now emerge as a resultimsupervised learning. This local similarity
property is the feature that makes SOM suitable for visatiim purposes, thus facilitating user
interaction with the data. Since each map vector now repteselass of similar objects, the SOM
is an ideal tool to visualize high-dimensional data, by @cting it onto a low-dimensional map
clustered according to some desired similar feature.

In our work we used the so-called batch-version of the trginin which all the training data
samples are matched against the map vectors before thengrdegins. The map vectors are
then averaged with all the training samples within the niegglthood radius simultaneously. The
procedure is repeatellsiep (free parameter to choose) times such that in every traistag the
same set of training data samples is associated with the evolaiagp The benefit of the batch
training compared to the incremental training, shown in Bigis that the training is independent
of the order in which the training samples are introducednannap.

3. ENVPDF algorithm

The aim of our approach is to both i) to be able to study the gniggs of the PDFs in a model
independent way and yet ii) to be able to implement knowlefdge the prior works on PDFs,
and ultimately iii) to be able to guide the fitting procedungeractively with the help of the SOM
properties.
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To accomplish this, we choose, at variance with the “congaat’” PDFs sets or NNPDFs,
to give up the functional form for the PDFs and rather to ratypurely stochastical methods in
generating the initial and training PDF samples. Our cha@ce GA-type analysis, in which our
parameters are the values of PDFs at the initial scale fdr Baeour at each value ofwhere the
experimental data exist. To obtain control over the shapgbePDFs we use some of the existing
distributions to establish an initial range, @we ope, within which we sample the candidate PDF
values.

For now we concentrate on DIS structure function data froni13], BCDMS [14] and Zeus
[15], which we use without additional kinematical cuts ormalization factors. The parameters
for the DGLAP scale evolution were chosen to be those of CTEQEEQG6L1 for lowest order
(LO)) [16], the initial scale bein@y = 1.3 GeV. In next-to-leading order (NLO) case the evolution
code was taken from [17] (QCDNUM17 beta release).

We use CTEQ6 [16], CTEQS [18], MRSTO02 [2, 19], Alekhin [3] a@dRV98 [20] PDF sets
as ourinit PDFs. We construct our initial PDF generator first to, forreflavour separately, select
randomly either the rang®.5, 1], [1.0,1.5] or [0.75,1.25] times any of the init PDF set. Next the
initial generators generate values for eagha ( To ensure a reasonable lamgdehaviour for the
PDFs, we also generate with the same method values for tharfeinx-points outside the range
of the experimental data. For simplicity we also require ghens to be positive in NLO.) using
uniform, instead of Gaussian, distribution around the RdFs, thus reducing direct bias from
them. Gaussian smoothing is applied to the resulting sebioityg and the flavours combined to
form a PDF set such that the curves are linearly interpoléeth the discrete set of generated
points, and scaled to conserve momentum, baryon numberlarde In this study we accept
the <few% normalization error which results from the fact that grange is notx = [0, 1], but
X = [Min(X4ata), 1]. We call these type of PDF sedatabase PDFs.

For aN x N SOM we choose the size of the database to¥& Ve randomly initialize the
map withN database PDFs sets, such that each map Véctamsists of the PDF set itself, and
of the obsewable§2p(x, Qg) derived from it, and train the map witNsep batch-training steps.
In order to obtain a reasonable selection of PDFs to stah, wit reject candidates which have
X2/N > 10. We choose the similarity criterion to be the similarifyobservables=)(x, Q%) with
Myata= L1. The similarity is tested at evenyairvalues both at the initial scale and at all the
evolved scales where experimental data exist. On evenyirigaistep, after the matching, all the
observables (PDFs) of the map vectors get averaged withibenaables (PDFs, flavor by flavor)
matched within the neighbourhood. The resulting new awstagap vector PDFs are rescaled
again to obey the sumrules. We call these type of PDFreagiPDFs. The map PDFs are evolved
and the observables at every experimental data scale apputedrand compared for similarity with
the observables from the training PDFs. After the trainirglvave a map wittN map PDFs and
the same M2 database PDF sets we used to train the map. This is the end fifsthoptimization
iteration.

During the later iterations we proceed as follows: At the ehéach iteration we pick from the
trained SOM 2 best PDFs as the init PDFs. These init PDFs are introducedhsttraining set
alongside with the database PDFs, which are now construsied each of the init PDHRs turn
as a center for a Gaussian random number generator, whignager all the flavours for eaclk
a value around thatame init PDF such that - o of the generator is given by the spread of the
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best PDFs in the topologically nearest neighbouring céle object of these generators is thus to
refine a good candidate PDF found in the previous iteratiofittgying its values within a range
determined by the shape of other good candidate PDFs fropréweous iteration. The generated
PDFs are then smoothed and scaled to obey the sumrules. iBeggyN > 10 are always rejected.
It is important to preserve the variety of the PDF shapes emtap, so we also keéfyig copies of
the first iteration generators in our generator mix. Sineeltbst PDF candidates from the previous
iteration are matched on this new map as an unmodified init, RBFguaranteed that theg? /N as

a function of the iteration either decreases or remains dinees We keep repeating the iterations
until the x?/N saturates.

The besty?/N values of the original init PDFEsare 1.67 for LO (CTEQ6) and 1.89 for NLO
(MRSTO02), and Table 1 lists results from a variety of ENVPDRIRS. The results do not seem
to be very sensitive to the number of SOM training stedse, but are highly sensitive to the
number of first iteration generators used in subsequerdtiters. Although the generators can
now in principle produce an infinite number of different PDEge algorithm would not be able
to radically change the shape of the database PDFs withatircing a random element on the
map. SettingNorig > 0 provides, through map PDFs, that element, and keeps tbethlg from
getting fixed to a local minimum.

SOM | Nstep | Norig | LO x2/N | NLO x2/N
55 | 5 2 1.04 1.08
55 | 10 | 2 1.10 -

55 | 20 | 2 1.10 -

5x5 | 30 | 2 1.10 -

5x5 | 40 | 2 1.08 -

5%5 | 5 0 1.41 -
15x15| 5 6 1.00 1.07

Table 1: x2/N for variety of ENVPDF runs against all the datasets (H1, ZEBSDMS, N=709).

Due to the stochastical nature of the ENVPDF algorithm, wg mall study the combined
results from several separate runs. It is especially ingmbtio verify the stability of our results, to
show that the results are indeed reproducible instead @&k laoincidences. Left panel of Fig. 2
presents the best NLO results, and the combix&tN < 1.2 spreads of the PDFs from any itera-
tion, for 10 repeated & 5, Nstep= 5 runs at the initial scale. The averagé/N and the standard
deviationo for these runs are 1.122 and 0.029, correspondinlyxto~ 20. The right panel of the
same Fig. 2 shows the 10 best result curves andyhiél < 1.2 spreads evolved up Q = 3.0
GeV. Since we have only used DIS data in this study, we are allly to explore the smaX-un-
certainty for now, and expectedly, the smalijuons obtain the largest uncertainty for all the cases
we studied.

Clearly the seemingly large difference between the smgllion results at the initial scale is
not statistically significant, but gets smoothed out duting course of the QCD evolution. The

These are thgz/ N for the initial scale PDF sets taken from the quoted paramatons and evolved with CTEQ6
DGLAP settings, no kinematical cuts or normalization fastior the experimental data were imposed. We do not claim
these values to describe the quality of the quoted PDF sets.
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evolved curves also preserve the initially set baryon nursbaling within 05% and momentum
sumrule within 15% accuracy. Thus the initial scale wiggliness of the PDFRmasnly only a
residual effect from our method of generating them and méeld to the overtraining of the SOM.

Therefore our simple method of producing the candidate PyH#tering random numbers
inside a predetermined envelope is surprisingly stablervtsed together with a complicated PDF
processing that SOMs provide. Remarkably then, even aesiB8@IM run can provide a quick
uncertainty estimate for a chosa? without performing a separate error analysis.
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Figure 2: NLO ENVPDF best results and th /N < 1.2 spreads of results from 10 separate runs.

4. Future of the SOMPDFs

So far we have shown a relatively straightforward methodhifiming stochastically gener-
ated, parameter-free, PDFs, with an uncertainty estinuaite desired\x2. However, the proposed
method can be extended much further than that. What ultlynagts the SOM method apart from
the standard global analyses or NNPDF method are the dhugtand visualization possibilities
that it offers. Instead of settimglyaia= L1 and clustering according to the similarity of the observ-
ables, itis possible to set the clustering criteria to belgng that can be mathematically quantified,
e.g. the shape of the gluons or the largeehaviour of the PDFs. The desired feature of the PDFs
can then be projected out from the SOM. Moreover, by combitite method with an interactive
graphic user interface (GUI), it would be possible to chaagd control the shape and the width
of the envelope as the minimization proceeds, to guide thegss by applying researcher insight
at various stages of the process, and the uncertainty baddiged by the SOM could further help
the user to make decisions about the next steps of the miaimiz With GUI it would be e.g.
possible to set the generators to sample a vector consistiRDF parameters, instead of values of
PDFs in each value ofof the data. That would lead to smooth, continuous type oftgwis, either
along the lines of global analyses, or NNPDFs usih§OMs forN Monte-Carlo sampled replicas
of the data. For such a method, all the existing error eségjaiesides an uncertainty band pro-
duced by the map, would be applicable as well. Since theisalutould be required to stay within
an envelope of selected width and shape, no restrictionthéoparameters themselves would be
required, and it would be possible to e.g. to constrain theprlation of the NN generated PDFs
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outside thex-range of the data without explicitly introducing terms ttsare the correct small- and
largex behaviour as in NNPDF method. The selection of the best PD#idates for the subse-
guent iteration could then be made based on the user’s prefes instead of solely based on the
Xx?/N. That kind of method in turn could be extended to more compkakronic matrix elements,
such as the ones defining the GPDs, which are natural caadiftatfuture studies of cases where
the experimental data are not numerous enough to allow foo@dehindependent fitting, and the
guidance and intuition of the user is therefore irreplateabhe possibilities of such a method are
widely unexplored.
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