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We propose a Parton Distribution Function (PDF) fitting technique which is based on an interac-

tive neural network algorithm using Self-Organizing Maps (SOMs). SOMs are visualization al-

gorithms based on competitive learning among spatially-ordered neurons. Our SOMs are trained

with stochastically generated PDF samples. On every optimization iteration the PDFs are clus-

tered on the SOM according to a user-defined feature and the most promising candidates are

selected as a seed for the subsequent iteration. Our main goal is thus to provide a fitting proce-

dure that, at variance with the global analyses and standardneural network approaches, allows

for an increased control of the systematic bias by enabling user interaction in the various stages

of the fitting process.
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1. Introduction

The cross sections for a number of hadronic reactions can be computed using perturbative
Quantum Chromodynamics (pQCD) convoluting the perturbatively calculable hard scattering co-
efficients with the non perturbative Parton Distribution Functions (PDFs), that parametrize the large
distance hadronic structure. The accuracy with which the theoretical predictions for observables
of such reactions can be compared against the high precisionexperimental data thus depends, not
only on the accuracy of the hard scattering part calculations, but also on the accuracy with which
the PDFs are known.

Currently, the established method to obtain the PDFs, used by the major PDF collaborations
(CTEQ [1] and references within, MRST [2], Alekhin [3], Zeus[4] and H1 [5]), is the global
analysis supplemented with an error estimation using some kind of variant of the Hessian method
(see e.g. [6] for details). This powerful combination allows for both extrapolation outside the
kinematical range of the data and extension to multivariable cases, such as nuclear PDFs. However,
there are uncertainties related to the method itself, that are difficult to quantify, but may turn out to
have a large effect. The differences between the current global PDF sets indeed tend to be larger
than the estimated uncertainties [7], and these differences again translate to the predictions for the
LHC observables, such as Higgs [8] orW± andZ production cross sections [1]. For details of PDF
uncertainty studies see e.g. Refs. [9].

Another approach to the PDF fitting has recently been proposed by the NNPDF collaboration
[10], who have replaced typical functional form ansatze used in global analyses with more complex
standard neural network (NN) solutions, and the Hessian method with Monte Carlo (MC) sampling
of the data. The NNPDF method circumvents many of the problems global analyses suffer, such
as bias resulting from fixing a functional form and selectinga suitable tolerance∆χ2 needed in
Hessian method, and it relies on genetic algorithm (GA) which works on a population of solutions
for each MC replica of the data, thus having a lowered possibility of getting fixed in local minima.
The estimated uncertainties for NNPDF fits are larger than those of global fits, possibly indicating
that the global fit uncertainties may have been underestimated. The complexity of NN results,
however, may also induce problems, especially when used in apurely automated fitting procedure.
Since the effect of modifying individual NN parameters is unknown, the result may exhibit strange
or unwanted behaviour in the extrapolation region, or in between the data points if the data is sparse.
Implementation of information not given directly by the data, such as nonperturbative models,
lattice calculations or knowledge from prior work in general, is also difficult in this approach.

The new PDF fitting method we have recently proposed in Ref. [11] relies on the use of Self-
Organizing Maps (SOMs), a subtype of neural network. The idea of our method is to create means
for introducing “Researcher Insight” instead of “Theoretical bias” by giving up a fully automated
fitting procedure, and eventually to develop an interactivefitting program which would allow us to
combine the best features of both the global analysis and theNNPDF approach.

2. Self-Organizing Maps

The SOM [12] is a visualization algorithm which attempts to represent all the available obser-
vations with optimal accuracy using a restricted set of models. SOM consists of nodes, map cells,
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which are all assigned spatial coordinates, and the topology of the map is determined by a chosen
distance metricMmap. Each celli contains a map vectorVi, that is isomorphic to the data samples
used for training of the neural network. For a simple 2-dimensional rectangular lattice, our choice
for the SOM shape, a natural choice for the topology isL1(x,y) = ∑2

i=1 |xi − yi|.
The implementation of SOMs proceeds in three stages: 1) initialization of the SOM (see

Fig. 1), 2) training of the SOM (Fig. 1) and 3) associating thedata samples with a trained map,
i.e. clustering. For the details of the SOM implementation,see [11].

Figure 1: Left: SOM initialization,Right: SOM training.

In the end of the training stage, cells that are topologically close to each other have map vectors
which are most similar to each other (according to a chosen similarity metric Mdata) compared to
all the other map vectors. In the matching phase the actual data is matched against the map vectors
of the trained map, and thus get distributed on the map according to the feature that was used as the
similarity criterion. Clusters now emerge as a result ofunsupervised learning. This local similarity
property is the feature that makes SOM suitable for visualization purposes, thus facilitating user
interaction with the data. Since each map vector now represent a class of similar objects, the SOM
is an ideal tool to visualize high-dimensional data, by projecting it onto a low-dimensional map
clustered according to some desired similar feature.

In our work we used the so-called batch-version of the training, in which all the training data
samples are matched against the map vectors before the training begins. The map vectors are
then averaged with all the training samples within the neighbourhood radius simultaneously. The
procedure is repeatedNstep (free parameter to choose) times such that in every trainingstep the
same set of training data samples is associated with the evolvingmap The benefit of the batch
training compared to the incremental training, shown in Fig. 1, is that the training is independent
of the order in which the training samples are introduced on the map.

3. ENVPDF algorithm

The aim of our approach is to both i) to be able to study the properties of the PDFs in a model
independent way and yet ii) to be able to implement knowledgefrom the prior works on PDFs,
and ultimately iii) to be able to guide the fitting procedure interactively with the help of the SOM
properties.
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To accomplish this, we choose, at variance with the “conventional” PDFs sets or NNPDFs,
to give up the functional form for the PDFs and rather to rely on purely stochastical methods in
generating the initial and training PDF samples. Our choiceis a GA-type analysis, in which our
parameters are the values of PDFs at the initial scale for each flavour at each value ofx where the
experimental data exist. To obtain control over the shape ofthe PDFs we use some of the existing
distributions to establish an initial range, orenvelope, within which we sample the candidate PDF
values.

For now we concentrate on DIS structure function data from H1[13], BCDMS [14] and Zeus
[15], which we use without additional kinematical cuts or normalization factors. The parameters
for the DGLAP scale evolution were chosen to be those of CTEQ6(CTEQ6L1 for lowest order
(LO)) [16], the initial scale beingQ0 = 1.3 GeV. In next-to-leading order (NLO) case the evolution
code was taken from [17] (QCDNUM17 beta release).

We use CTEQ6 [16], CTEQ5 [18], MRST02 [2, 19], Alekhin [3] andGRV98 [20] PDF sets
as ourinit PDFs. We construct our initial PDF generator first to, for each flavour separately, select
randomly either the range[0.5,1], [1.0,1.5] or [0.75,1.25] times any of the init PDF set. Next the
initial generators generate values for eachxdata ( To ensure a reasonable large-x behaviour for the
PDFs, we also generate with the same method values for them ina fewx-points outside the range
of the experimental data. For simplicity we also require thegluons to be positive in NLO.) using
uniform, instead of Gaussian, distribution around the initPDFs, thus reducing direct bias from
them. Gaussian smoothing is applied to the resulting set of points, and the flavours combined to
form a PDF set such that the curves are linearly interpolatedfrom the discrete set of generated
points, and scaled to conserve momentum, baryon number and charge. In this study we accept
the <few% normalization error which results from the fact that our x-range is notx = [0,1], but
x = [min(xdata),1]. We call these type of PDF setsdatabase PDFs.

For aN ×N SOM we choose the size of the database to be 4N2. We randomly initialize the
map withN database PDFs sets, such that each map vectorVi consists of the PDF set itself, and
of the observablesF p

2 (x,Q2
0) derived from it, and train the map withNstep batch-training steps.

In order to obtain a reasonable selection of PDFs to start with, we reject candidates which have
χ2/N > 10. We choose the similarity criterion to be the similarity of observablesF p

2 (x,Q2) with
Mdata = L1. The similarity is tested at everyxdata-values both at the initial scale and at all the
evolved scales where experimental data exist. On every training step, after the matching, all the
observables (PDFs) of the map vectors get averaged with the observables (PDFs, flavor by flavor)
matched within the neighbourhood. The resulting new averaged map vector PDFs are rescaled
again to obey the sumrules. We call these type of PDF setsmap PDFs. The map PDFs are evolved
and the observables at every experimental data scale are computed and compared for similarity with
the observables from the training PDFs. After the training we have a map withN map PDFs and
the same 4N2 database PDF sets we used to train the map. This is the end of the first optimization
iteration.

During the later iterations we proceed as follows: At the endof each iteration we pick from the
trained SOM 2N best PDFs as the init PDFs. These init PDFs are introduced into the training set
alongside with the database PDFs, which are now constructedusing each of the init PDFsin turn
as a center for a Gaussian random number generator, which assigns forall the flavours for eachx
a value around thatsame init PDF such that 1−σ of the generator is given by the spread of the
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best PDFs in the topologically nearest neighbouring cells.The object of these generators is thus to
refine a good candidate PDF found in the previous iteration byjittering its values within a range
determined by the shape of other good candidate PDFs from theprevious iteration. The generated
PDFs are then smoothed and scaled to obey the sumrules. Sets with χ2/N > 10 are always rejected.
It is important to preserve the variety of the PDF shapes on the map, so we also keepNorig copies of
the first iteration generators in our generator mix. Since the best PDF candidates from the previous
iteration are matched on this new map as an unmodified init PDF, it is guaranteed that theχ2/N as
a function of the iteration either decreases or remains the same. We keep repeating the iterations
until theχ2/N saturates.

The bestχ2/N values of the original init PDFs1 are 1.67 for LO (CTEQ6) and 1.89 for NLO
(MRST02), and Table 1 lists results from a variety of ENVPDF runs. The results do not seem
to be very sensitive to the number of SOM training steps,Nstep, but are highly sensitive to the
number of first iteration generators used in subsequent iterations. Although the generators can
now in principle produce an infinite number of different PDFs, the algorithm would not be able
to radically change the shape of the database PDFs without introducing a random element on the
map. SettingNorig > 0 provides, through map PDFs, that element, and keeps the algorithm from
getting fixed to a local minimum.

SOM Nstep Norig LO χ2/N NLO χ2/N

5x5 5 2 1.04 1.08

5x5 10 2 1.10 -

5x5 20 2 1.10 -

5x5 30 2 1.10 -

5x5 40 2 1.08 -

5x5 5 0 1.41 -

15x15 5 6 1.00 1.07

Table 1: χ2/N for variety of ENVPDF runs against all the datasets (H1, ZEUS, BCDMS, N=709).

Due to the stochastical nature of the ENVPDF algorithm, we may well study the combined
results from several separate runs. It is especially important to verify the stability of our results, to
show that the results are indeed reproducible instead of lucky coincidences. Left panel of Fig. 2
presents the best NLO results, and the combinedχ2/N ≤ 1.2 spreads of the PDFs from any itera-
tion, for 10 repeated 5×5, Nstep= 5 runs at the initial scale. The averageχ2/N and the standard
deviationσ for these runs are 1.122 and 0.029, corresponding to∆χ2 ∼ 20. The right panel of the
same Fig. 2 shows the 10 best result curves and theχ2/N ≤ 1.2 spreads evolved up toQ = 3.0
GeV. Since we have only used DIS data in this study, we are onlyable to explore the small-x un-
certainty for now, and expectedly, the small-x gluons obtain the largest uncertainty for all the cases
we studied.

Clearly the seemingly large difference between the small-x gluon results at the initial scale is
not statistically significant, but gets smoothed out duringthe course of the QCD evolution. The

1These are theχ2/N for the initial scale PDF sets taken from the quoted parametrizations and evolved with CTEQ6
DGLAP settings, no kinematical cuts or normalization factors for the experimental data were imposed. We do not claim
these values to describe the quality of the quoted PDF sets.
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evolved curves also preserve the initially set baryon number scaling within 0.5% and momentum
sumrule within 1.5% accuracy. Thus the initial scale wiggliness of the PDFs ismainly only a
residual effect from our method of generating them and not linked to the overtraining of the SOM.

Therefore our simple method of producing the candidate PDFsby jittering random numbers
inside a predetermined envelope is surprisingly stable when used together with a complicated PDF
processing that SOMs provide. Remarkably then, even a single SOM run can provide a quick
uncertainty estimate for a chosen∆χ2 without performing a separate error analysis.
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Figure 2: NLO ENVPDF best results and theχ2/N ≤ 1.2 spreads of results from 10 separate runs.

4. Future of the SOMPDFs

So far we have shown a relatively straightforward method of obtaining stochastically gener-
ated, parameter-free, PDFs, with an uncertainty estimate for a desired∆χ2. However, the proposed
method can be extended much further than that. What ultimately sets the SOM method apart from
the standard global analyses or NNPDF method are the clustering and visualization possibilities
that it offers. Instead of settingMdata= L1 and clustering according to the similarity of the observ-
ables, it is possible to set the clustering criteria to be anything that can be mathematically quantified,
e.g. the shape of the gluons or the large-x behaviour of the PDFs. The desired feature of the PDFs
can then be projected out from the SOM. Moreover, by combining the method with an interactive
graphic user interface (GUI), it would be possible to changeand control the shape and the width
of the envelope as the minimization proceeds, to guide the process by applying researcher insight
at various stages of the process, and the uncertainty band produced by the SOM could further help
the user to make decisions about the next steps of the minimization. With GUI it would be e.g.
possible to set the generators to sample a vector consistingof PDF parameters, instead of values of
PDFs in each value ofx of the data. That would lead to smooth, continuous type of solutions, either
along the lines of global analyses, or NNPDFs usingN SOMs forN Monte-Carlo sampled replicas
of the data. For such a method, all the existing error estimates, besides an uncertainty band pro-
duced by the map, would be applicable as well. Since the solution would be required to stay within
an envelope of selected width and shape, no restrictions forthe parameters themselves would be
required, and it would be possible to e.g. to constrain the extrapolation of the NN generated PDFs

6



P
o
S
(
L
C
2
0
0
8
)
0
2
2

New approach to the Parton Distribution Functions: Self-Organizing Maps Heli Honkanen

outside thex-range of the data without explicitly introducing terms to ensure the correct small- and
large-x behaviour as in NNPDF method. The selection of the best PDF candidates for the subse-
quent iteration could then be made based on the user’s preferences instead of solely based on the
χ2/N. That kind of method in turn could be extended to more complexhadronic matrix elements,
such as the ones defining the GPDs, which are natural candidates for future studies of cases where
the experimental data are not numerous enough to allow for a model independent fitting, and the
guidance and intuition of the user is therefore irreplaceable. The possibilities of such a method are
widely unexplored.
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