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1. Introduction

The investigation of hadron electromagnetic (em) form factors in the spacelike (SL) and time-
like (TL) regions, within the light-front (LF) dynamics, opens a unique possibility to study hadronic
states, by exploiting the almost simple LF vacuum (see e.g. [1] for a recent review). In view of
this, the Fock expansion of hadronic states, like |meson〉 = |qq̄〉val +{|qq̄qq̄〉+ |qq̄ g〉.....}nonval and
|baryon〉 = |qqq〉val +{|qqq qq̄〉+ |qqq g〉.....}nonval , becomes physically meaningful, with the well
known caveat related to the presence of the so-called zero modes, necessary for recovering the chi-
ral symmetry breaking within a LF framework. Moreover, in the TL region, a change of reference
frame, i.e. from q+ = 0 to q+ 6= 0, yields the possibility to address the vast phenomenology of
hadronic resonances, e.g. isoscalar (IS) and isovector (IV) Vector Mesons (VM’s).

Aim of our approach is to include effects beyond CQM, as suggested by the Fock expansion
of a hadron state, taking in great consideration the clue suggested by the present difficulties for
relativistic constituent quark models (CQM’s) to give a detailed description of the Nucleon form
factors (ff’s), without implementing new features, like e.g. the quark ff’s (see [2] for the first
systematic study of those quantities). Furthermore, we have extended the yield of comparison,
treating on the same footing both SL and TL em form factors. This improvement imposes a change
of reference frame, namely adopting a frame where q⊥ = 0 and q+ 6= 0 [3].

2. Em current and the Mandelstam Formula

For an interacting system, a covariant expression of the matrix elements of the em current
can be obtained is given by the Mandelstam formula [4], that represents the starting point of our
approach. For illustrative purpose, let us consider the Pion in the TL region. Then one has [5]

〈PπPπ̄ | jµ |0〉 = R

∫
d4k

(2π)4 Λπ (k′,Pπ)Λπ(k,Pπ) Tr[S(k′) γ5S(k−q) Γµ(k,q) S(k) γ5] (2.1)

where R = −ıNc 2e m2/ f 2
π , Nc is the number of colors, k′ = k−Pπ , S(p) = 1/(/p−m+ ıε) is the

CQ propagator, γ5 Λπ(k,Pπ) the Pion vertex function (deduced from a simple effective quark-Pion
Lagrangian), Pµ

π and Pµ
π the Pion momenta, Γµ(k,q) the quark-photon vertex and qµ the virtual

photon momentum. The corresponding expression for the SL case can be obtained by standard
changes [5].

The next step is represented by the integration over k−, that realizes a projection of the Man-
delstam formula onto the 3D LF hyperplane. If we knew the whole analytic structure of both the
Pion vertex and the quark-photon vertex, then the integration could be done exactly, but in absence
of such detailed information, one should apply some approximation, like considering only the poles
of the propagators. This approximation turns out to be a very effective one in the q+ 6= 0 frame [6].
Once, the integration is performed under the above approximation, one can easily singled out the
expected contributions, both in the SL region (i.e. the triangle contribution and the qq̄-production
term or Z-diagram) and in the TL region, where the photon materializes in a qq̄ pair, (cf [5]).

The analytic approximation generates two new questions that we solved through phenomeno-
logical assumptions. The first one is: how to model the quark-photon vertex, and the second one
is: how to describe both the qq̄-Pion vertex in the valence sector and the emission or absorption of
a Pion by a quark, that leads to the non valence vertex.
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A simplification in the calculation can be achieved by a quite natural assumption, namely
a vanishing Pion mass. Then, both in TL and SL regions, only diagrams with a qq̄ production
contribute. In view of this, it is necessary to model a Vector Meson Dominance (VMD) approach
for describing the quark-photon vertex (without a bare term, still due to the vanishing Pion mass),
viz

Γµ(k,q) =
√

2∑
n,λ

[
ελ ·V̂n(k,k−Pn)

]
Λn(k,Pn)

[ε µ
λ ]∗ fVn

(q2 −M2
n + ıMnΓ̃n(q2))

(2.2)

where fVn is the decay constant of the n-th VM into a virtual photon (to be calculated in our
model), while Mn is the mass, Γ̃n(q2) = Γn q2/M2

n (for q2 > 0) the corresponding total decay width
and ελ (Pn) the VM polarization. Moreover,

[
ελ (Pn) ·V̂n(k,k−Pn)

]
Λn(k,Pn) is the VM vertex

function. The Dirac structure, V̂ µ
n (k,k −Pn), is chosen in order to generate the proper Melosh

rotations for 3S1 states [7], while Λn(k,q), the momentum-dependent part of the VM Bethe-Salpeter
amplitude, will be approximated on the LF hyperplane as follows.

In the valence sector, 3D amplitudes are described through LF VM wave functions [5], i.e.

P+
n Λn(k,Pn)|[k−=k−on]

[M2
n −M2

0(k+,k⊥;P+
n ,Pn⊥)]

= ψn(k
+,k⊥;P+

n ,Pn⊥) (2.3)

where k−on = (m2 + |k|2⊥)/k+, and ψn(k+,k⊥;P+
n ,Pn⊥) is an eigenfunction of the relativistic CQ

square mass operator of Ref. [11], with both confinement (harmonic oscillator potential) and π−ρ
splitting (Dirac-delta interaction in the pseudoscalar channel). Moreover, it is normalized to the
probability of the valence Fock state, according to the model elaborated in [5]. As to the valence
component of the Pion, an analogous Ansatz has been adopted. Then, two different calculations
have been generated by using the Pion eigenstate of the model in Ref. [11] and the pQCD asymp-
totic wave function.

In the non valence region, besides the Pion valence component there is the non valence com-
ponent, given by the emission (absorption) of a Pion by a quark. We assume a constant interaction
for describing such a process, like in Ref. [12]. Note that the coupling constant is fixed by the
normalization of the Pion ff.

Finally, as a consequence of the simplifying assumption mπ = 0, the SL triangle term is vanish-
ing and, notably, in the pair-production terms one has only instantaneous contributions, produced
by the standard LF decomposition of the Dirac propagator (i.e. S(k) = (/kon + m)/[k+(k−− k−on +

iε)]+ γ+/2k+). In order to model instantaneous vertex functions entering in such contributions,
we put Λist ∼ C Λ f ull , where the constant C is thought to roughly describe the effects of the
short-range interaction. Indeed, we use the relative weight, wVM = CVM/Cπ , as a free parameter.

3. Pion em Form Factor in the SL and TL regions

The microscopic calculation of the Pion em ff can be realized by applying the previous ingre-
dients, and the results are shown in Fig. 1, where only the IV VM’s are considered and the CQ
mass is mq = 200 MeV , (see also [5] where mq = 265 MeV was adopted). In [5], experimental IV
VM masses and widths for the first four resonances have been used, while for the other IV VM (up
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Figure 1: The Pion em form factor vs q2. Theoretical calculations with two free parameters: i) IV VM
widths for n > 4, Γn>4 = 0.15 GeV , ii) the constant wV M = −1.0 for describing the instantaneous vertexes
(see text). Solid line: calculation with the Pion wave function from the model of [11]; dashed line: the same
as the solid line, but with the asymptotic Pion wave function (see [5]). Data from the compilation of Ref. [8]
and from the TJLAB collaboration [9]. (Adapted from [5]).

to n=20 in Eq. (2.2)), calculations based on the eigenfunctions of Ref. [11] have been exploited.
The two free parameters present in our VMD microscopical approach are: i) the VM width for
n > 4, taken equal to Γn>4 = 0.150 GeV , as suggested by the experimental VM widths around
Mn ∼ 2GeV , and ii) wVM = CVM/Cπ , the relative weight of the two instantaneous contributions,
taken equal to wVM = −1.0, from a global fit. The comparison with the data is quite accurate over
a wide kinematical range, but a more refined description of the instantaneous contribution could
help in filling the deep near 2 (GeV/c)2, as well as contributions from ω- and φ -like mesons. It is
worth noting the missing strength around q2 ∼ 4 (GeV/c)2, as in the TL proton ff (cf Fig. 3).

4. Nucleon em Form Factors in the SL and TL regions

The Dirac structure of the quark-Nucleon vertex is suggested, as in the case of the quark-
Pion vertex, by an effective Lagrangian. In the actual calculation the model of Ref. [13] has been
adopted, but without a derivative coupling (i.e. putting α = 1 in the Lagrangian of [13]). The
Nucleon vertex function, with a properly symmetrized Dirac structure, is given by[10]

Φσ
N(k1,k2,k3,PN) = ı

[
S(k1) τy γ5 SC(k2)C ⊗ S(k3) + S(k3) τy γ5 SC(k1)C ⊗ S(k2) +

+ S(k3) τy γ5 SC(k2)C ⊗ S(k1)
]

Λ(k1,k2,k3) χτN UN(PN ,σ) (4.1)

where UN and χτN are the nucleon spinor and isospin eigenstate respectively, and Λ describes the
symmetric momentum dependence of the vertex function upon the quark momenta, k i.

For instance, SL em ff’s, that are present in the matrix elements of the macroscopic current,
can be evaluated microscopically by means of the Mandelstam formula, i.e.

〈σ ′,P′
N | jµ |PN ,σ〉 = ŪN(P′

N,σ ′)

[
−F2(Q

2)
P′

N
µ +PN

µ

2MN
+GM(Q2)γ µ

]
UN(PN ,σ) = 3Nc ×

∫
d4k1
(2π)4

∫
d4k2
(2π)4 ∑

{
Φ̄σ ′

N (k1,k2,k
′
3,P

′
N) S−1(k1)S

−1(k2) I
µ(k3,q) Φσ

N(k1,k2,k3,PN)
}

(4.2)
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where I µ(k3,q) is the quark-photon vertex and the sum runs over isospin and Dirac indexes. In
the TL region, an analogous expression holds [10].

In the frame where q⊥ = 0 and q+ =
√

|q2|, we integrate on k−1 and on k−2 taking into account
only the propagator poles, as for the Pion. Then we are left with a 3-momentum dependence of the
vertex functions, and diagrammatic contributions in analogy to the Pion (see [10] ).

For the Nucleon case, the quark-photon vertex necessarily contains both isovector and isoscalar
terms, I µ = I

µ
IS + τzI

µ
IV , where each term has a purely valence contribution (in the SL re-

gion only) and a contribution corresponding to the pair production (or Z-diagram). In turn, the
Z-diagram contribution can be decomposed in a bare term + a VMD term (according to the de-
composition of the photon state in bare, hadronic [and leptonic] contributions), viz

I
µ

i (k,q) = Niθ(P+
N − k+)θ(k+)γ µ +θ(q+ + k+)θ(−k+)

{
ZB Niγ µ +Zi

VM Γµ
i (k,q)

}
(4.3)

with i = IS, IV, NIS = 1/6 and NIV = 1/2. The constants ZB (bare term) and Z i
VM (VMD term)

are unknown weights to be extracted from the phenomenological analysis of the data. Notably, the
VMD term Γµ

i (k,q) is the same already used in the Pion case, but now includes IS VM. Up to 20
IS and IV VM have been considered. As in the case of the Pion, mq = 200 MeV .

The momentum dependence of the Nucleon vertex function has been modeled in accord to the
valence and non valence classification. In the valence sector, the spectator quarks are on their-own
k−-shell, and the 3-momentum dependence, is approximated through a Nucleon wave function a la
Brodsky (PQCD inspired) [1], namely

ΛV (k1,k2,k3)

[M2
N −M2

0(1,2,3)]
= N

(9 m2)7/2

(ξ1ξ2ξ3)p
[
β 2 +M2

0(1,2,3)
]7/2 (4.4)

where M0(1,2,3) is the free mass of the three-quark system, ξi = k+
i /P+

N and N a normalization
constant, fixed through the proton charge. The power 7/2 and the parameter p = 0.13 are chosen
for obtaining an asymptotic decrease of the triangle contribution faster than the dipole. Only the
triangle diagram determines the magnetic moments and it is very weakly dependent on p. Then
β = 0.65 GeV can be fixed through the evaluation of the anomalous magnetic moments, µ p and
µn, obtaining for those quantities, µp = 2.87 (Exp.= 2.793) and µn = −1.85 (Exp.= -1.913).

The non valence vertex can depend on the available invariants, e.g. in the SL region on i) the
free mass of the spectator quarks, M0(1,2), and ii) the free mass of the N-q̄ system M0(N, 3̄). Then,
in the SL region we approximate the 3-momentum dependence of the non valence vertex by

ΛSL
NV (k1,k2,k3) = [g12]

2 [gN3̄]
7/2−2

[
k+

12
P′+

N

][
P+

N

k+
3

]r [
P′+

N

k+
3

]r

(4.5)

where k+
12 = k+

1 +k+
2 and gAB = (mA mB)/

[
β 2 +M2

0(A,B)
]
. In the TL region, the non valence vertex

can depend on the mass of a Nucleon - qq system (see [10] for more details).
The adjusted parameters are four: i) two weights out three present in the pair production term

of Eq. (4.3), i.e. ZB = ZIV
VM = 2.283 and ZIS

VM/ZIV
VM = 1.12; ii) the power p = 0.13 in the valence

amplitude, Eq. (4.4); iii) the power r = 0.17 in the SL and TL non valence vertexes, see e.g. Eq.
(4.5). The minimization yields χ 2 = 1.7. Moreover, the calculated proton charge radius is rp =

(0.903±0.004) f m (rexp
p = (0.895±0.018) f m), while for the neutron one has −dGn

E(q2)/dq2 =

5
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Figure 2: Proton ff’s vs −q2. Solid line: full calculation; Dotted line: triangle contribution only, i.e. without
pair production. Data from the compilation in [14]. GD(|q2|) = [1+ |q2|/(0.71(GeV/c)2)]−2. (After [10]).

(0.501± 0.002) (GeV/c)−2 (exp value; −dGn
E(q2)/dq2 = (0.512± 0.013) (GeV/c)−2. In Fig. 2

the SL nucleon form factors are shown. It is very important to note, that within our approach, the
possible zero in µpGp

E/Gp
M , (at this moment, only suggested by the experimental data), is strongly

related to the Z-diagram contribution, i.e. to higher Fock components. Therefore, such a feature, if
experimentally confirmed, should represent a clear signature of effects beyond the CQM, since the
pair-production contribution is essential for obtaining the vanishing result.

The TL effective form factor, defined by Ge f f (q2) =
√

(|GM(q2)|2 +η |GE(q2)|2)/(1+η)

(with η = 2m2
N/q2), is shown in Fig. 3. It is very interesting to note that a comparison between a

theoretical VMD, based on the present-day VM spectra, and the experimental results, could give
valuable information. For instance, missing strengths at q2 = 4.5 (GeV/c)2 (the same feature
appears in the Pion ff) and q2 = 8 (GeV/c)2, points to an enrichment of the present VM database.

5. Conclusions

A microscopical model for Pion and Nucleon em form factors in both SL and TL region has
been proposed. The main ingredients are: i) a LF projection of the so-called Mandelstam formula
for the matrix elements of the current and ii) a microscopical model for the quark-photon vertex,
containing a VMD contribution and, in the Nucleon case, a bare term. The Z-diagram, related to
higher Fock components of both hadrons and photon, is essential for both Pion and Nucleon, in
our reference frame q+ 6= 0. In particular, the calculation for the Pion ff, with two free parameters,
is in a reasonable agreement with the TL data, and becomes very accurate in the SL region. As to
the Nucleon, where we adopted four adjusted parameters, a nice agreement is obtained in the SL

6



P
o
S
(
L
C
2
0
0
8
)
0
2
6

Hadron electromagnetic form factors Giovanni Salmè

4 6 8 10 20
q2   (GeV/c)2

0

5

10

15

20

25

G
p ef

f(q
2 )/G

D
(q

2 )

4 6 8 10
q2   (GeV/c)2

0

5

10

15

20

25

G
n ef

f(q
2 )/G

D
(q

2 )

Figure 3: Nucleon effective form factors in the TL region. Left panel: proton ff (data from [15]). Right
panel: neutron ff (data from [16]). Solid line: full calculation; dotted line: bare term only. Dashed line:
neutron full calculation multiplied by a factor of two. (After Ref. [10]).

region, with a very interesting interpretation of the possible zero in µ pGp
E/Gp

M , as an effect of a
cancellation between the triangle contribution and the pair-production term. In the TL region, the
comparison with the proton data is very instructive, since a missing strength for q2 = 4.5 (GeV/c)2

and q2 = 8 (GeV/c)2 indicates possible new resonances. Unfortunately, the available TL neutron
[16] data are largely underestimated by the present model.
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