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1. The Boer-Mulders Function and ĒT

In momentum space, the distribution of polarized quarks in an unpolarized target is given by
the expression

fq↑/p =
1
2

[
f q
1 (x,k2

T )−h⊥q
1 (x,k2

T )

(
P̂×kT

)
·Sq

M

]
, (1.1)

whereSq is the quark spin, andh⊥1 (x,k2
T ), the Boer-Mulders function, describes a momentum space

asymmetry. In the Trento conventions [1], for a target approaching the observer and a positive
h⊥1 (x,k2

T ), spin up quarks preferentially move towards the left.
A similar expression can be written down in position space bymaking use of impact parameter

dependent parton distributions,

Fq
s (x,b) =

1
2

[
H (x,b2)−Si

qb jε i j 1
M

(
E

′
T (x,b2)+2H̃

′
T (x,b2)

)]
, (1.2)

where script letters denote the Fourier transforms of GPDs.It is convenient to define the quantity
ĒT (x,b2) = E ′

T (x,b2)+ 2H̃ ′
T (x,b2), which describes a sideways shift in the position of polarized

quarks in an unpolarized hadron [2]. While the Boer-Muldersfunction requires a final state interac-
tion to exist,ĒT (x,b2) is an intrinsic property of hadrons. However,ĒT (x,b2) is the position space
analogue ofh⊥1 (x,k2

T ) in the sense that the signs of the functions are negatively correlated through
the mechanism of chromodynamic lensing [3], which transforms position space asymmetries into
momentum space asymmetries through attractive final state interactions.

Model calculations indicate that the sign of the Boer-Mulders function is likely the same in all
ground state hadrons [4]. In order to explore this, one wouldlike to perform model calculations of
the sign ofh⊥1 (x,k2

T ). However, it is often more straightforward to calculate the sign of ĒT (x,b2) in
position space, and then employ chromodynamic lensing to infer the sign ofh⊥1 (x,k2

T ).

2. ĒT (x,b2) in the Bag model

As a general Bag model wave function, take the Dirac spinor

Ψm =

(
i f χm

−g(~σ · x̂)χm

)
, (2.1)

where f is a monotonically decreasing radial function,g is the derivative off , as required by the
free Dirac equation, andχm is a Pauli spinor.

The impact parameter dependent parton distributions that we would like to evaluate are of the
form

FΓ(x,b⊥) = N
−1
∫

dz−

4π
eixp+z− 〈p+,0⊥

∣∣ q̄(0,b⊥)Γq(z−,b⊥)
∣∣p+,0⊥

〉
. (2.2)

Complications arising from computing light-like correlation functions in the Bag model can be
avoided by studying the lowest moment of the GPDs,

∫
dxFΓ(x,b⊥) = const.

∫
dx3
〈
~0
∣∣∣ q̄(x3,b⊥)Γq(x3,b⊥)

∣∣∣~0
〉

, (2.3)
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Translational invariance has been used to localize the states in Eq. (2.3) to the origin.
Quarks with transverse polarizations are projected out by the operator1

2q̄
[
γ+− s jiσ+ jγ5

]
q

[2] and therefore the vector field representing the transverse quark polarization density is given by
−iq̄σ+ jγ5q. We thus consider impact parameter dependent PDFs withΓ = −iσ+ jγ5, which are
related to the Fourier transforms of the chirally odd GPDsĒT , HT andH̃T [2]

F i
T = −ε i jb j 1

M
Ē

′
T + Si

(
HT − 1

4M2∆bH̃T

)
+
(
2bib j −b2δ i j)S j 1

M2H̃
′′

T , (2.4)

whereS j is the spin of the target. Only the term involvinḡET contributes for an unpolarized target,
which is why it is onlyĒT that is expected to be related to the Boer-Mulders function.The term
can be extracted by considering the density corresponding to Γ = −iσ+ jγ5 and summing over the
target spin. For a single quark ’hadron’, where the hadron spin polarization is the same as the quark
total angular momentum, this procedure yields

∑
m
〈PSm|Ψ̄(x3,b⊥)iσ+iγ5Ψ(x3,b⊥) |PSm〉

= ∑
m

Ψ̄m(x3,b⊥)iσ+iγ5Ψm(x3,b⊥)

= − 1√
2

∑
m

( f 2 + g2)Si
m +2 f gε i jb̂ j

⊥−2g2b̂i
⊥(b̂⊥ ·~Sm) (2.5)

where~Sm is the spin vector corresponding to the Pauli spinorχm. The first and last terms of (2.5)
do not survive the sum over ‘target’ polarizations. The asymmetry is given entirely by the middle
term, which is an interference between the upper and lower components of Eq. (2.1). For the lowest
moment ofĒT , we have

κT =

∫
dxĒT (x,0,0) =

∫
dxd2b⊥ĒT = −∑

m

M
2

∫
dxd2b⊥bkεkiF i

T (2.6)

where∑m denotes a sum over polarizations. The last integral in Eq. (2.6) is zero for all terms inF i
T

that do not contain a factor ofb j. Comparing Eq. (2.6) with Eq. (2.5), and using Eq. (2.3), yields

κT =
2M

3
√

2π

∫ R0

0
dr r3 f g, (2.7)

The right hand side of (2.7) is always positive becausef andg are non-negative functions forr less
than the bag radiusR0, implying thatĒT ≥ 0.

In the bag model, the correlation between quark spin and quark orbital motion is the same,
regardless of the orientation ofjz. All quark spin orientations thus contribute coherently tōE

q
T

and in the case ofd quarks,Ē d
T is equal toĒ d

T for a single quark, while foru quarks it is twice
as large. In fact, for any model where the quarks are confined by some mean field potential one
finds that all quark orbits give the same contribution toĒ

q
T and thusĒ q

T is equal toĒ q
T for a single

quark orbit, multiplied by the number of quarks of flavorq. In particular, in the largeNC limit,
whereNu = Nd +1→ ∞, the lowestx moment ofĒ q

T is the same foru andd quark and both are of
orderO(NC). Since the support of GPDs shrinks tox = O(1/NC), this implies thatĒu

T (x,ξ , t) =

Ēd
T (x,ξ , t) = O(N2

C).
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Figure 1: Lowest moment of the impact parameter dependent transversity distribution for an unpolarized
target in the MIT bag model. The ‘outside’ of the spherical bag corresponds to the regions without arrows.

In order to visualise the transverse spin - impact parametercorrelation in the bag model, the
vector field

−
∫

dx3 f gε i jb̂ j (2.8)

representing the lowest moment of the transversity densityin an unpolarized target has been plotted
in Fig. 1 for bag model wave functionsf = j0(r), andg = j1(r).

In the bag model, we thus obtain a counter-clockwise polarization for impact parameter de-
pendent quark distributions, which implies a negative Boer-Mulders function.

This result holds in potential models more general than the bag model, which has a scalar
potential with the shape of an infinite square well, and a vanishing vector potential. In the bag
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model, the upper and lower components of the Dirac equation,φu andφl , satisfy

φl =
1

E + m
~σ ·~pφu. (2.9)

In the case of a general scalar potential, where the mass termm(r) depends on the radius, and a
general vector potentialV (r), this relationship becomes

φl =
1

E + m(r)−V(r)
~σ ·~pφu. (2.10)

In order to avoid the Klein paradox [5],V (r) cannot exceedm(r), and so the denominator of Eq.
(2.10) is positive. Therefore, the results for the sign of the Boer-Mulders function are the same as
in the bag model. In fact, the sign of the spin-orbit correlation described by Eq. (2.5) should be the
same for the ground state of all confining potential models.

The Boer-Mulders function has been calculated directly in the Diquark model in [6, 7, 8, 9, 10,
11], andĒT has been directly calculated in the constituent quark modelin [12]. Both calculations
produce the same sign for the Boer-Mulders function as the Bag model. While these models involve
interactions, they are contact interactions and the quarksmostly obey the free Dirac equation that
is responsible for the results from the Bag model.

Finally, the Bag model results also agree with the sign foundon the lattice [13].

3. ĒT in the Pion

For the pion, the distribution of quarks with spinsi in impact parameter space reads

1
2

[
F + siF i

T

]
= H (x,b2)+ siε i jb j 2

m
∂

∂b2 ĒT (x,b2), (3.1)

whereH (x,b2) andĒT (x,b2) are again the Fourier transforms of the GPDsH(x,0, t) andĒT (x,0, t)
respectively. The definitions ofH(x,0, t) andĒT (x,0, t) whose definition are particularly simple,

∫
dz−

4π
eixP+z− 〈π ′∣∣ q̄(−1

2
z)γ+q(

1
2

z)q |π〉 |z+=0,z=0 = H(x,ξ , t)

∫
dz−

4π
eixP+z− 〈π ′∣∣ q̄(−1

2
z)σ+ jγ5q(

1
2

z) |π〉 |z+=0,z=0 =
1
Λ

ĒT (x,ξ , t)
ε+ jαβ ∆α Pβ

P+
.

(3.2)

HereΛ is some hadronic mass scale, which needs to be included in thedefinition if ĒT (x,ξ , t) is to
be dimensionless.

Except for a slight change in the bag radius, the quark wave functions in the bag model are the
same for pions and nucleons. Therefore, apart from a slight rescaling due to the different bag radii,
Ēu

T in a π+ is the same as12Ēu
T or Ēd

T in the proton. The factor12 accounts for the fact that there are
twice as manyu quarks in a proton as in aπ+. Most importantly, we find again the same sign for
ĒT as in the nucleon.

The Nambu-Jona-Lasino (NJL) model of the pion produces the same sign for the Boer-Mulders
function as the Bag model [14, 15]. As in the case of the Diquark and constituent quarks models of
the nucleon, the quarks in the NJL model are mostly free apartfrom contact interactions. It is the
relationship between the upper and lower components of a free Dirac spinor that produce the sign
of the Boer-Mulders function.
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