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We find the light-cone wavefunction representations of the Sivers and the Boer-Mulders distri-
bution functions. A necessary condition for the existence of these functions is that the light-
cone wavefunctions have complex phases. We induce the complex phases by incorporating the
final-state interactions into the light-cone wavefunctions in the scalar diquark model, and then
we calculate explicitly the Sivers and the Boer-Mulders distribution functions from the obtained
light-cone wavefunctions.
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Sivers and Boer-Mulders Distribution Functions

1. Introduction

It was found that the final-state interaction of quark and gluon induces the single-spin asym-
metry in the semi-inclusive deep inelastic scattering at the twist-two level [1]. Then, this time-odd
twist-two effect was interpreted as the Sivers effect by finding that the final-state interaction can
be treated as the source of the time-odd Sivers distribution function [2, 3, 4, 5, 6]. It is also often
referred to as “naively T -odd”, because the appearance of this function does not imply a violation
of time-reversal invariance, since they can arise through the final-state interactions. With these
developments, the existence of the Sivers distribution function has gained a firm theoretical sup-
port. The Sivers distribution function f ⊥1T describes the difference between the momentum distri-
butions of quarks inside the nucleon transversely polarized in opposite directions. There is another
quark distribution function of the nucleon induced by the final-state interaction of quark and gluon,
which is called the Boer-Mulders distribution function h⊥

1 . h⊥1 describes the difference between
the momentum distributions of the quarks transversely polarized in opposite directions inside the
unpolarized nucleon. The distribution functions f ⊥1T and h⊥1 are depicted in Figs. 1 and 2.

Figure 1: Schematic depiction of the Sivers distribution function f ⊥1T . The spin vector ST of the nucleon
points out of and into the page, respectively, and kT is the transverse momentum of the extracted quark.

Figure 2: Schematic depiction of the Boer-Mulders distribution function h⊥
1 . The spin vector ST of the quark

points out of and into the page, respectively, and kT is the transverse momentum of the extracted quark.

The light-cone wavefunctions are valuable for studying the hadronic processes by treating
the non-perturbative effects in a relativistically covariant way [7, 8]. The formulas which express
the electromagnetic form factors and the generalized parton distribution functions in terms of the
light-cone wavefunctions were found in Refs. [9, 10, 11] and Refs. [12, 13], respectively. In Ref.
[14] the light-cone wavefunction representation of the nucleon electric dipole moment was found
by introducing the complex phases of the light-cone wavefunctions, and studied a general relation
connecting nucleon electric dipole and anomalous magnetic moments.

In this paper we find the formulas which express the Sivers and the Boer-Mulders distribu-
tion functions in terms of the matrix elements of the nucleon spin states. We find the light-cone
wavefunction representations of the Sivers and the Boer-Mulders distribution functions, and we
calculate these functions for the scalar diquark model by using these light-cone wavefunction rep-
resentations.
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2. Sivers and Boer-Mulders Distribution Functions

The kT -dependent unpolarized quark distribution function f1(x,~k⊥), the Sivers distribution
function f⊥1T (x,~k⊥) and the Boer-Mulders distribution function h⊥

1 (x,~k⊥) are parts of the proton
correlation function Φ(x,~k⊥ : P,S) [15]:

Φ(x,~k⊥ : P,S) =
M

2P+

[

f1(x,~k⊥)
γ ·P
M

+ f⊥1T (x,~k⊥)εµνρσ
γ µPνkρ

⊥Sσ
T

M2 +h⊥1 (x,~k⊥)
σµνkµ

⊥Pν

M2 + · · ·
]

,

(2.1)
from which we find that f1(x,~k⊥) and f⊥1T (x,~k⊥) can be defined through matrix elements of the
bilinear vector current:

∫

dy−d2~y⊥
16π3 eixP+y−−i~k⊥·~y⊥ 〈P,~S⊥|ψ(0)γ+ ψ(y) |P,~S⊥〉

∣

∣

∣

y+=0
(2.2)

=
1

2P+

[

f1(x,~k⊥) U(P,~S⊥) γ+ U(P,~S⊥) + f⊥1T (x,~k⊥)
ki
⊥

M
U(P,~S⊥) σ i+ U(P,~S⊥)

]

,

where
1

2P+
U(P,~S⊥)σ i+U(P,~S⊥) = ε jiS j

⊥ with ε12 = −ε21 = 1 . (2.3)

For an explicit calculation, let us consider the case of ~S⊥ = (S1
⊥,S2

⊥) = (0,1) for the transverse
spin in (2.2). Then, the proton state is given by (|P,↑〉+ i|P,↓〉)/

√
2 and Eq. (2.2) becomes

A
〈P,↑ |− i〈P,↓ |√

2
ψ(0)γ+ ψ(y)

|P,↑〉+ i|P,↓〉√
2

∣

∣

∣

y+=0
= f1(x,~k⊥) − S2

⊥
k1
⊥

M
f⊥1T (x,~k⊥) , (2.4)

where
A ≡

∫

dy−d2~y⊥
16π3 eixP+y−−i~k⊥·~y⊥ . (2.5)

From (2.4) we have

f1(x,~k⊥) = A
1
2

[

〈P,↑ |J+(y)|P,↑〉+ 〈P,↓ |J+(y)|P,↓〉
]∣

∣

∣

y+=0
, (2.6)

−k1
⊥

M
f⊥1T (x,~k⊥) = A

i
2

[

〈P,↑ |J+(y)|P,↓〉−〈P,↓ |J+(y)|P,↑〉
]∣

∣

∣

y+=0
, (2.7)

where J+(y) = ψ(0)γ+ ψ(y).
On the other hand, from (2.1) the Boer-Mulders distribution function h⊥

1 (x,~k⊥) can be defined
through matrix elements of the bilinear tensor current:

∫

dy−d2~y⊥
16π3 eixP+y−−i~k⊥·~y⊥ 〈P,~S⊥|ψ(0)σ i+ ψ(y) |P,~S⊥〉

∣

∣

∣

y+=0
(2.8)

=
1

2P+

[

h⊥1 (x,~k⊥)
ki
⊥

M
U(P,~S⊥) γ+ U(P,~S⊥)

]

,

which gives

ki
⊥

M
h⊥1 (x,~k⊥) =

1
2 A

([

〈P,↑ |ψ(0)σ i+ ψ(y) |P,↑〉
]

+
[

〈P,↓ |ψ(0)σ i+ ψ(y) |P,↓〉
])
∣

∣

∣

y+=0
. (2.9)
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3. Light-Cone Wavefunction Representations of Sivers and Boer-Mulders Functions

The expansion of the proton eigensolution |ψp〉 on the eigenstates {|n〉} of the free Hamilto-
nian HLC gives the light-cone Fock expansion:

∣

∣

∣
ψp(P

+,~P⊥)
〉

= ∑
n

n

∏
i=1

dxi d2~k⊥i√
xi 16π3 16π3δ

(

1−
n

∑
i=1

xi

)

δ (2)

(

n

∑
i=1

~k⊥i

)

(3.1)

×ψn(xi,~k⊥i,λi)
∣

∣

∣
n; xiP

+,xi~P⊥ +~k⊥i,λi

〉

.

The plus component momentum fractions xi = k+
i /P+ and the transverse momenta~k⊥i of partons

represent the relative momentum coordinates of the light-cone wavefunctions. The physical trans-
verse momenta of partons are ~p⊥i = xi~P⊥ +~k⊥i. The λi label the light-cone spin projections of the
partons along the quantization direction z. The n-particle states are normalized as

〈

n; p′i
+,~p ′

⊥i,λ
′
i

∣

∣n; pi
+,~p⊥i,λi

〉

=
n

∏
i=1

16π3 p+
i δ (p′i

+ − pi
+) δ (2)(~p ′

⊥i −~p⊥i) δλ ′
i λi

. (3.2)

From (2.6) and (2.7) we get

f1(x,~k⊥) = B
1
2

[

ψ↑ ∗
(n) (xi,~k⊥i,λi) ψ↑

(n)(xi,~k⊥i,λi) + ψ↓ ∗
(n) (xi,~k⊥i,λi) ψ↓

(n)(xi,~k⊥i,λi)
]

, (3.3)

−k1
⊥

M
f⊥1T (x,~k⊥) = B

i
2

[

ψ↑ ∗
(n) (xi,~k⊥i,λi) ψ↓

(n)(xi,~k⊥i,λi) − ψ↓ ∗
(n) (xi,~k⊥i,λi) ψ↑

(n)(xi,~k⊥i,λi)
]

,

(3.4)
where

B ≡ ∑
n,λi

∫ n

∏
i=1

dxi d2~k⊥i

16π3 16π3δ

(

1−
n

∑
j=1

x j

)

δ (2)

(

n

∑
j=1

~k⊥ j

)

δ (x− x1) δ (2)(~k⊥−~k⊥1) . (3.5)

As we see in (3.4), the Sivers distribution function is given by the product of the light-cone wave-
functions which have opposite proton spin states and same quark spin states.

From (2.9) we have

k1
⊥

M
h⊥1 (x,~k⊥) =

B

2 (−i)
([

ψ↑ ∗
(n) (xi,~k⊥i,λ ′

1 =↓,λi6=1) ψ↑
(n)(xi,~k⊥i,λ1 =↑,λi6=1)

− ψ↑ ∗
(n) (xi,~k⊥i,λ ′

1 =↑,λi6=1) ψ↑
(n)(xi,~k⊥i,λ1 =↓,λi6=1)

]

+
[

ψ↓ ∗
(n) (xi,~k⊥i,λ ′

1 =↓,λi6=1) ψ↓
(n)(xi,~k⊥i,λ1 =↑,λi6=1)

− ψ↓ ∗
(n) (xi,~k⊥i,λ ′

1 =↑,λi6=1) ψ↓
(n)(xi,~k⊥i,λ1 =↓,λi6=1)

])

. (3.6)

As we see in (3.6), the Boer-Mulders distribution function is given by the product of the light-
cone wavefunctions which have same proton spin states and opposite quark spin states, whereas
we found in (3.4) that the Sivers distribution function is given by the product of the light-cone
wavefunctions which have opposite proton spin states and same quark spin states.
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Figure 3: (a) Tree level diagram and (b) diagram with final-state interaction.

4. Explicit Calculations with Scalar Diquark Model

The final-state interactions in semi-inclusive deep inelastic scattering are commonly treated as
a part of the proton distribution function [2, 5]. If we adopt the same treatment for the wavefunc-
tions, we can consider that the final-state interactions for the scalar diquark model depicted in Fig.
3 induce the spin-dependent complex phases to the wavefunctions:







ψ↑
+ 1

2
(x,~k⊥) = (m+xM)

x

(

1+ ia1

)

ϕ ,

ψ↑
− 1

2
(x,~k⊥) = − (+k1+ik2)

x

(

1+ ia2

)

ϕ ,
(4.1)







ψ↓
+ 1

2
(x,~k⊥) = − (−k1+ik2)

x

(

1+ ia2

)

ϕ ,

ψ↓
− 1

2
(x,~k⊥) = (m+xM)

x

(

1+ ia1

)

ϕ ,
(4.2)

where ϕ = ϕ(x,~k⊥) = −gx
√

1− x/(~k2
⊥ + B) with the nucleon-quark-diquark coupling constant g

and B = −x(1− x)M2 +(1− x)m2 + xλ 2, and a1 and a2 are given by

a1,2 =
e1e2
8π

(~k2
⊥ +B) g1,2 (4.3)

with [1]

g1 =

∫ 1

0
dα

−1
α(1−α)~k2

⊥ +αλ 2
g +(1−α)B

, g2 =

∫ 1

0
dα

−α
α(1−α)~k2

⊥ +αλ 2
g +(1−α)B

.

(4.4)
In the above, e1 and e2 are the quark and diquark charge, and M, m, λ and λg are the nucleon,
quark, diquark and gluon mass, respectively. We take λg = 0 at the end of the calculation.

Using the wavefunctions (4.1) and (4.2) in the formulas (3.3), (3.4) and (3.6), we obtain

f1(x,~k⊥) =
1

16π3

[

(M +
m
x

)2 +
~k2
⊥

x2

]

ϕ2 , (4.5)

f⊥1T (x,~k⊥) =
1

16π3 2 M
x

(M +
m
x

) ϕ2 e1e2
8π

(~k2
⊥ +B)

1
~k2
⊥

ln
(~k2

⊥ +B)

B
, (4.6)

h⊥1 (x,~k⊥) =
1

16π3 2 M
x

(M +
m
x

) ϕ2 e1e2
8π

(~k2
⊥ +B)

1
~k2
⊥

ln
(~k2

⊥ +B)

B
. (4.7)
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The results in (4.6) and (4.7) agree with those in Refs. [1, 5] with an additional overall minus sign
which should be corrected there [16].

5. Conclusion

In this paper we find the light-cone wavefunction representations of the Sivers and the Boer-
Mulders distribution functions. A necessary condition for the existence of these functions is that the
light-cone wavefunctions have complex phases. We induce the complex phases by incorporating
the final-state interactions into the light-cone wavefunctions in the scalar diquark model, and then
we calculate explicitly the Sivers and the Boer-Mulders distribution functions from the light-cone
wavefunctions of the model. The results are the same as those obtained from the direct calculation
of the hadronic tensor without employing the concept of the light-cone wavefunction, since the
essential interpretation of the final-state interaction is identical in both calculations. However, the
analysis in this paper by using the light-cone wavefunction representations is useful to grasp the
natures of the Sivers and the Boer-Mulders distribution functions. For example, it shows how the
signs of these functions are determined in each model and it helps us understand why the signs
of the Sivers and the Boer-Mulders distribution functions are same or different depending on the
model used.

This work was supported in part by the International Cooperation Program of the KICOS
(Korea Foundation for International Cooperation of Science & Technology).
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