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1. Introduction

A relativistic framework to treat three-body systems isassary for our understanding of the
valence structure of baryons in terms of constituent qua®se possible relativistic approach
is the quantization on the light-front (LF) hypersurfacé. [To investigate the baryon structure
with electroweak probes and large momentum transfers,dbari@ance of LF wave functions un-
der kinematical boosts is essential [1]. In this contexts #vorthwhile to control the covariant
properties of the adopted LF framework and its relation toua-tflimensional description [2].

In order to investigate the structure of the baryon LF vadewave function one has to deal
with a relativistic three-body problem. Starting from arfalimensional three-body Bethe-Salpeter
equation (BSE), the Faddeev decomposition has to be intemtiand the LF projection defined with
the correspondent expansion in the Fock space. So far, kgdretitment of light-front dynamics
(LFD) at leading order (LO) constitutes an involved probjdracause a systematic expansion to
construct LF three-body equations from a given covariangdyics is still lacking.

The quasi-potential approach (QPA) offers one possibletisol to the problem, by supplying
a systematic framework to construct the light-front dynasrof composite systems from a given
4-dimensional model. The approach avoids subtle problsonsh as the double-counting of LF
reducible graphs (see e.g. [2]), and the spurious diveggeimcthe transverse momenta from the
LF projection of the two-fermion box diagram [3, 4]. It alseats consistently the fermionic
LF instantaneous terms. The QPA is also useful in the studhefelectromagnetic structure
of composite systems with conserved current operatordiwitFD, for two bosons [5] or two
fermions [6]. The next step is to apply the QPA to define thhtifgont dynamics of a 3-body
system.

In this contribution we apply the QPA to the four-dimensiotfaee-body BS equation in
order to provide the systematical expansion of the kerng&itefral equation for LF valence wave
function. We show how the QPA works in the study of relatigishree-body systems by going
beyond the LO kernel of the LF integral equation. We derive ¢hrresponding next-to-leading
order (NLO) contribution to the kernel. We exemplify the hned in a three-boson system with a
contact interaction by starting from the ladder approxiorabf the covariant BS equation. The
LF bound state equation for the valence wave function in L& MbO will be obtained. Previous
works [7, 8, 9, 10] were limited only to the LO kernel.

2. QP Expansion and Faddeev Decomposition

We will restrict ourselves to the ladder BSE for three bosdrgrmally the potential in the
four-dimensional equation is built by multiplying the tvbody interactiorvj(lf) from the exchange
of a quantum between the particlieand j and by the inverse of the individual propagator of the
spectator particlg S:

3
V= _ZVi P Vi=Ve St (2.1)
i=

This approximation does not take into account three-bagylircible crossed ladders, self energies,
vertex corrections and irreducible 4-dimensional thredybinteractions. In terms of the quasi-
potential approach, the BSE for the transition malrixV +V GgT, is substituted by a modified
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one,T :W+WC~50T. This implies the choice of an auxiliary Green’s funct(@b). HereGq is the
free four-dimensional three-body Green’s function. Togkdee dynamical content of the original
BSE, the quasi-potentidV should be expressed in terms of the interactfoasW =V + VAW,
wherelg := Gg — éo.

The QPA is a useful tool to project a given four-dimensionaiaimics onto the light-front hy-
persurface when a particular choice of the auxiliary Gremiction is made [2)Go := Go| gal |Go,
wheregg = |Gp| is the free light-front resolvent, including phase-spametdrs. The "bar" opera-
tion on the right or on the left of a four-dimensional matrieraent means that the integration
overk~ = kO + k3 is performed. These integrations eliminate the relatigbtifront time between
the particles. For three-body systems, taking into accmurtmomentum conservation, only two
single particle momenta are independent, therefore th@redtion of the relative LF time requires
the definition of a LF time projection operation according to

\A::/dk{dkg(kl‘kz‘]A A ::/dkl‘dkz‘A\kl‘k2‘>, 2.2)

with A being an operator that has matrix elements depending onn@péendent momenta after
the center of mass motion is factorized.

In order to make the practical procedure clear, let us wridi@tly the three-free Green’s
function:

o o —i d(ky — ki)
k; K, |GolK; Ko ) = ~— b -
HlISI ) i kR )
K, — k5
- detle) g
(kg —Koon) (K™ — kg =Ky — (K —ki—kz)on)
The LF projection yields the LF free Green’s function as
16(K* —k{ —K)6(k)8(Kf) 2.0

Ky ky) = ’
k) 0™ ) K gy Ko (K K~ o))

where, for sake of simplicity, we sé&t= (k*,k, ). The reader is addressed to refs.[2, 3, 5, 6] to
follow the details of the formal manipulations within QPAgerform the light-front projection.

In the 3-body context, the reduced or three-dimensionabial equation for the LF transition
matrix ist = w+ wgpt, which has a Lippman-Schwinger form analogous to the twaybane.
The effective interactiomv comes from the projection of the quasi-potentéato equal light-front
times. We now perform the Faddeev decomposition [11] of tiuesition matrix. Hence, we write
ti = Wi +wigot, witht = 32 ;t andw; = gy * [GoW Go| gy >. This decomposition follows from a
corresponding decomposition of the 4-dimensioiak zﬁzlvv. .

The Faddeev decomposition &f =V + VAW is due toV = z?zl\/i resulting inW =V, +
ViAW . The integral equation for the Faddeev component of theiguodsntial is derived from
W =V, +Vido(W +W, +W). It can be rewritten agl — ViAg)W =V, +Vido(W; +Wk). Inverting
the operator on the left side &%, one has thati = W) +W2)i80(W; +Wk), whereW,); =
Vi +VidoW2); is the quasi-potential for the two-body system with pagtics a spectator.

The expansion in powers df of W is given by:

W =V +Vido (Vi +Vj + V) +Vido (M +Vj + Vi) Ao (Vi +Vj +Vi)+... . (2.5)
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The LO and NLO terms are given BY-C =V, and byWNO =V, +ViAo(Vi +V; + V), respectively.
Making the expansion of the Faddeev equationsVforonly connected terms in the two-body
subsystem quasi-potential appear:

W= W2)i +W2)iBo(W2)j +Wi2)k) +W2)iBoW2)jBo(Wi2)i +Wi2)k) +- - - (2.6)

The Faddeev components of LF effective potential in LO an@®Nice written in terms of the above
expansion as

WP =gyt |GoViGo| gp b, WO =wiO+ gyt [GoVido(Vi + V) +Vi)Gol 9o (2.7)

respectively. In the next section we will show in an exampkeaxplicit expressions for the three-
boson LF bound state equations in LO and NLO.

3. Three-boson model with zero range interaction

The interaction Lagrangian for a zero range model can beéenrds.? = %}\ ¢*. Following
the prescription given by Eq.(2.1), we have for the poténia

(), ke Vi [KG ) = A (2m)26% (K — K) (P — ). (3.1)

For the contact interaction, we can easily demonstratert@eptyViAoV; = 0. Therefore, we have
thatW,); = Vi, which allows to write the integral equation for the Faddeemponent of the quasi-
potential a®M =V, +ViAo(W; +Wk). The expansion of the this equation gives the LO and the NLO
quasi-potential adM-© = Vi andWNLC = WO +ViAq(V; + ), respectively.

3.1 LO three-boson LF dynamics

The effective potential in LO ig}° = ggl|GoVi Go|ggl, which has matrix elements given by:
O (K;, ki K ki) = —2miA ko3 (ki —K) . (3.2)

The equation for the Faddeev components of the bound-statexvin is given by; = wigo(V; +
Vj + V) which in LO gives that}© = (1—w-9go) *w{Cgo(W° + ). Introducing the matrix
elements of/v,LO andgg in the above equation one gets:

WOk = 2 [ i ki (1~ wEg0) Ok, K)o (KL KMC(LK) , (3:3)

where the factor 2 comes from the symmetry of the total veftextion by the exchange of the

bosons. In detail

(kj k| (1= wiOg0) "Wl K)) = iT(MR)K™ 8% (k —K)) (3.4)

whereM? = (K — kion)?. Explicitly one has that the two-boson amplitude is given by

-1
1

x(1— ) (M2 g_’jj)

(M) =21 | A~ +—/ dx/dsz (3.5)
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The integral equation for the Faddeev component of the thosen vertex becomes:

BB K K VOl K)
Ol k) =2 M) [ e R, K Kk R

(3.6)

where the elementary volumed$k = dk*d?k, /(2(2m)%). Note that the dependence of left hand
side of Eq. (3.6) depends only & therefore we can write that(k;, k) = v-°(k;), and making
the transformation of the integration momentum frignto ki, owing tol_<’ ﬁ—l_(l’(—l_q, one obtain
the LO three-body bound state equation derived in ref.[f]thiat work, a regularization in the
transverse momentum of the spectator particle was usef.[8]r the cutoff was not introduced
and it was discovered by numerical calculations that theetiitoson bound states exist in a range
of values of two-boson bound state masses.

3.2 NLO three-boson L F dynamics

We deduce now the contribution to the kernel of the integgala¢ion for the bound-state at
next-to-leading order. The QP in NLO WNLO = WLO 1+ \ViAq(V; + Vi) and the corresponding
effective potential is:

WO = wi® + awt, AwtO = g5t GoViAaV; Gold * + gp *|GoViloVkGolgp - (3.7)
The integral equation for the Faddeev component can beswrits:

WO = (1 wHOgo) 1wkCgq EV’#L% (1—wig0) AWM Ogo 5 vi-2, (38)

where the first term in the right hand side is analogous to &&).( The second term is connected
and it gives the NLO contribution to the three-boson liglatat bound-state equation:

¢ / LO(k. K.
ViNLO(I_(j,I_(k) _ _T(szk) /d?,k/ k|+) k+) k1+ k+ VN (k|7kj)+
kurk‘,:r <K_ — Kon = Kjon — (K—k —kﬁ)on>

e(lir _ K+ + kk+ _ k{+ _ kk+ k/+ kk+
3K g3 i
27-[)\ /d I—(,Jd I—({( k/j+kl/(+(ki+ o K+_|_ k{(—‘r) K+ — k/+ kk+

1 vN'-O(k’ k’)+vN'-O(k’ K) +WLO(K, K,
(K~ —Kin—Kogn— (K~ —Kan) (<~ Kion ~ion— i (6~ K+ §Jon — (K~ ~ Ko
k= k). (3.9)

The integrand of the second term in the above equation camesf; *|GoViAoVkGo| 3 n VY- while
the term indicated bk, < k) comes fromgg*|GoViAgVkGo| 3oV -C. In Fig. 1, the LO and NLO
are represented diagrammatically.

The NLO contribution to the kernel of Eqg. (3.9) is an irrechleiLF three-boson interaction
(see also [12]), which comes from the coupling of the valestege to a five-boson intermediate
state (see Fig. 1). The virtual five-body system is heavien thhe three-boson system leading to
an effective interaction that acts at short distances. ©hgisn of of Eq. (3.9) still requires that a
renormalization procedure should be applied to the integaation as the bare coupling constant
appears in the NLO kernel. This issue will be not tackled here



Next-to-leading order light-front three-body dynamics T. Frederico

Figure 1. Diagrammatical representation of the LO (left) and NLOJItjgcontributions to the kernel of the
LF integral equation for the Faddeev components of the xéutection of the valence state .

4. Summary

We show how to use the quasi-potential approach to projeatidtheoretic dynamics of
three-particle systems in the ladder approximation toidte-front. Our starting point is the four-
dimensional Bethe-Salpeter equation for three partiClé® projection technique allows to elim-
inate three-body reducible diagrams from the kernel of tivegral equation for the valence wave
function. We applied the Faddeev decomposition to the QFetivel connected equations for the
corresponding components. From these components we gongie next-to-leading order con-
tribution to the kernel of the light-front three-body intagequation for the transition matrix. We
exemplify the method for a bound three-boson system withméacb interaction deriving explicitly
the NLO integral equation for the Faddeev component of theséffex function of the valence
component of the bound state. Within the same framework weatso derive conserved cur-
rent operators acting on the valence sector of three-boskes. This problem and the issue of
renormalization of the NLO LF three-body equation are leftd future work.
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